INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

What are Macros?

[' A Macro is a piece of programming code that runs in excel environment, and it helps to automate

routine tasks. In other words, a macro is a recording of your reqular steps in excel, which you can

replay using a single button.

[When you create a macro, you are recording your mouse clicks and keystrokes. After you create
a macro, you can edit it to make minor changes to the way it works. You can use a macro as

many times as you want. It reduces the amount of time you will require to do a task.

[l Suppose that every month, you create a report for your accounting manager. You want to format
the names of the customers with overdue accounts in red, and also apply bold formatting. You

can create and then run a macro that quickly applies these formatting changes to the cells you

select.

What is VBA?

[l Visual Basic for applications (VBA for short) is a programming environment designed
to work with Microsoft's Office applications (Word, Excel, Access, and PowerPoint).

[Components in each application (for example, worksheets or documents) are
exposed as objects to the programmer to use and manipulate to a desired end.
Almost anything you can do through the normal use of the Office application can
also be automated through programming.

[l The main difference between VBA and Macro is that VBA is the programming
language to create Macros while Macros are programming codes that run on Excel

environment to perform automatic routine tasks.

Why use VBA & Macros?

0 Automates repetitive and routine tasks: By learning VBA, a process such as receiving emails in

Outlook, generating and sending a responding email, processing data in Excel, and even copy and

paste work becomes easy.

0 Accessibility to other users: With VBA, other users do not have to install anything provided you

write a script for everyone in the department. VBA can also allow you to add user-friendly
variables that other users can modify to a certain degree. All in all, there is quick access to

information from other users.

0 Reduces the turnaround time: People working in the finance department are always under

pressure to submit back their reports. It's usually a tedious task for them and which under stressful
conditions may lead to inaccurate reports. VBA removes this burden and makes it easy to prepare

reports and templates within a short time.

Getting Started

Macros and VBA tools can be found on the

Developer tab, which is hidden by default,

so the first step is to enable it.

To enable developer tab:

1.

Right click on any existing tab on the
ribbon

Select Customize Ribbon.

Under Customize the Ribbon and under
Main Tabs, select the Developer check

box.

B Help P Telime
Customize Quick Access Toolbar...

Cal Show Quick Access Toolbar Below the Ribbon 29 Wrap Text
" Customize the Ribbon...

|
- [}e Merge & Center ~
- Ir

~ngnment

Collapse the Ribbon

Al v fe

= Customize the Ribbon
“a

Customize Ribbon

Cancel

Developer Tab

The Developer tab is the place to go when you want

to do or use the following:

[l Write macros.

Use XML commands.

Use ActiveX controls.

o O O O

programs.

[l Use form controls in Microsoft Excel.

Run macros that you previously recorded.

-
{13 o

QD

Visual Macros
Basic
Code

!

Create applications to use with Microsoft Office

i

INSERT PAGE LAYOUT

Add Ins COM
Add-Ins
Add-Ins

-

Insert Desi

1‘ ; e

Controls

Book1 - Excel

FORMULAS

I D F

j Expans;on Packs

Source

XML

Refresh Data

1@ -0X

DATA REVIEW VIEW ~ DEVELOPER

Import

Export
Document
Panel

Modify

Sign in

My First Macro

There are two ways to create a macro

1. By recording a macro: Recording a macro is the simplest way to create
a macro. One doesn't need any prior knowledge of VBA or programming
to use it. Once you start recording a macro, you only need to carry out
your task, how you would've carried it out in general. Excel will translate
each step that you do in a language that it understands and create a
macro.

2. By writing your own code: To overcome limitations in recording a macro,
one can create a macro by writing their own code.

Recording a Macro

The steps to record a macro are as follows:

1. Click the Developer Tab

2. Inthe Code group, click on the Macro button. This will
open the ‘Record Macro’ dialog box.

3. Inthe Record Macro dialog box, enter a name for your
macro. | am using the name EnterText. Remember that
you cannot use spaces in between.

4. You can assign a keyboard shortcut if you want. In this
case, we will use the shortcut Control + Shift + N.
Remember that the shortcut you assign here would
override any existing shorcuts in your workbook.

Note: For example, if you assign the shortcut Control + S, you will not be able to use
this for saving the workbook (instead, every time you use it, it will execute the macro)

Home Insert Pagelayout Formulas Data Review View = Developer

j |H ﬂ Record Macro 2 v e E Properties
| | e a 3 [.x’f .

' tig] Use Relative Rererences ’ 0 View Code
Visual Macros ‘ Add- Excel COM Insert Design . S
Basic 1, Macro Security ins Add-ins Add-ins ~ Mode (4 RunDialog

Code Add-ins Controls
Record Macro ? X

Macro name:
EnterText

Shortcut key:
Ctrl+Shift+ | N

Store macro in:

This Workbook

Description:

Cancel

Recording a Macro

6.

N

In the ‘Store macro in’ option, make sure This
Workbook' is selected. This step ensures that
the macro is a part of the workbook. It will be
there when you save it and reopen again, or
even if you share it with someone.

You can enter a description if you want.

Click OK. As soon as you click OK, it starts to
record your actions in Excel. You can see the
Stop recording’ button in the Developer tab,
which indicates that the macro recording is in
progress.

HoS-o--

File Home Insert Page Layout Fq

Visual Macros
Basic

M Stop Recording

== .
o Use Relative References

! Macro Security
Code

Add-
ins £

Recording a Macro

Once you have started recording a macro you can start carrying out your task and
every single action will be recorded. For example:

[l Type your name in the active cell
Move the cell pointer to the cell below and enter this formula: =NOW()
Select the formula cell, and press Ctrl+C to copy that cell to the Clipboard.

Choose Home =>Clipboard =>Paste =>Values (V).

o O O O

With the date cell selected, press Shift+up arrow to select that cell and the one
above it (which contains your name).

[l Use the controls in the Home = Font group to change the formatting to Bold and
make the font size 16 point.

[Choose Developer =>Code =>Stop Recording

Running a Macro

There are multiple ways to run a macro:

[l To run your macro, move to an empty cell and
press Ctrl+Shift+N (or whatever shortcut you
assigned)

OR

[Choose Developer=Code =>Macros (or press
Alt+F8) to display the Macros dialog box.

[l Select the macro from the list (in this case,
NameAndTime), and click Run.

(Ensure that you have cleared what you have typed
in the workbook to determine whether the macro is
working correctly.)

Macro

Macro name:

EnterText t

s
EnterText

Run

Macros in: | All Open Workbooks v

Description

Step Into
Edit
Create
Delete

Options...

Running Macros Through Button

Another method to run a macro is by
assigning a button to it.

1. Click on the Developer tab
2. Inthe Control group, click on Insert.

3. Inthe options that appear, in the Form
Controls options, click on the Button (Form
Control) option.

Data Review View Developer
|3:| E“ﬁ Properties
=< ?8 = @View Code
COM Insert esign
Add-ins - Mode [Z!Run Dialog

Controls

Review View Developer

E‘-\ Properties
ﬂ N

:Q| View Code

Insert Desi
de E|Run Dialog

-

F Controls

OIVMEBIE e
[Ac & Bl B B

ActiveX Controls [
OV B
Ble AERZE 1§

Running Macros Through Button

4. Click anywhere on the worksheet. This will insert the
button wherever you click and automatically open
the ‘Assign Macro’ dialog box. i pcsigniMiacs ~ i

EnterText R Edit

5. Inthe Assign Macro dialog box, you will see a list of

all the macros that you have in the workbook Modro3

.'l Macro4 tt

|
~

6. Click the Macro name that you want to assign to this
button. In this example, | will click on the macro
named ‘EnterText’

Macros in: | All Open Workbooks

7. C/iCk OI’7 OK Description

Whenever you will press the button it will run that | - [ox J[cme
respective macro.

N |- & I

Absolute Vs Relative Reference

[l Just like absolute & relative reference in excel there is the same concept in macros
too.

[l If you use an absolute reference option to record a macro, the VBA code would
always refer to the same cells that you used.

[l For example, if you select cell A2, enter the text Excel and press Enter, every time -
no matter where you are in the worksheet and no matter which cell is selected,
your code would first select cell A2, enter the text Excel, and then move to cell A3.

[l If you use a relative reference option to record a macro, VBA wouldn't hardcode
the cell references. Rather, it would focus on the movement when compared with
the active cell.

[l For example, suppose you already have cell Al selected, and you start recording
the macro in the relative reference mode. Now you select cell A2, enter the text
Excel, and hit the enter key. Now, when you run this macro, it will not go back to
cell A2, instead, it will move relative to the active cell.

[l You can switch on relative reference: Developer = Code =>Use Relative Reference.

What Recording a Macro does in the Backend?

Now let’s go to the Excel backend - the VB
Editor - and see what recording a macro
really does.

Here are the steps to open the VB Editor in
Excel:

1. Click the Developer tab.

2. In the Code group, click the Visual Basic

button.
OR
Use shortcut - ALT + F11 (hold the ALT key and

press F11)

Home Insert Page Layout

: L'J Record Macro

- Use Relative References
acros |
1. Macro Security

Visual

Code

VBA Sheet Parts

Menu Bar .

Toolbar

Project

Explorer

Properties
Window

\L AL file Egit

|

Code
Window

a Microsoft Visual Basic for Applications - Book1 - [Module1l

H=E~-d

= = [

Project - VBAProject

View Insert Fgormat
f,

Debug Run

»._ -

I(General)

= £ Modules

}Propenies - Sheet1

= &% vBAProject (Book1)
= &5 Microsoft Excel Objects
= BH) Sheetl (Sheetl)
d Thisworkbook

vas Modulel

'Sheetl Worksheet
| Alphabetic ICategonzed |

(Name)
DisplayPageBreaks
DisplayRightTolLeft
EnableAutoFilter

.EnableCalculatnon

EnableFormatConditior True

EnableOutlining
EnablePivotT able
EnableSelection
Name

F e

Sheetl
False
False
False
True

False

False

0 - xdNoRestrictions
Sheetl

Sub testcode

L 3] =
inis 1S

MsgBox
End Sub

W

<« |

Immediate
Window

Jools Window Help

E] [testcode

| Iﬂrﬂ\

el

L

|

l“jn |

VBA Sheet Parts

[

[

Menu Bar: This is where you have all the options of VB Editor. Consider this as the ribbon of VBA.
It contains commands that you can use while working with the VB Editor.

Toolbar - This is like the Quick Access Toolbar of the VB editor. It comes with some useful
options, and you can add more options to it. Its benefit is that an option in the toolbar is just a
click away.

Project Explorer Window - This is where Excel lists all the workbooks and all the objects in each
workbook. For example, if we have a workbook with 3 worksheets, it would show up in the
Project Explorer. There are some additional objects here such as modules, user forms, and class
modules.

Code Window - This is where the VBA code is recorded or written. There is a code window for
each object listed in the Project explorer — such as worksheets, workbooks, modules, etc. We
will see later in this tutorial that the recorded macro goes into the code window of a module.

Properties Window - You can see the properties of each object in this window. To show this,
click the view tab and select Properties Window.

Immediate Window -It's useful when you want to test some statements or while debugging. You
can make it appear by clicking the View tab and selecting the Immediate Window option.

A
What happened when we recorded a macro?
When we recorded the macro - EnterText, the following things happened in
the VB Editor:
1. Anew module was inserted.
2. A macro was recorded with the name that we specified — EnterText
3. The code was written in the code window of the module.

So if you double-click on the module (Module 1in this case), a code window
as shown below would appear.

[l' You can edit the code as you want, maybe change the name or font.

[When you rerun the macro, you will see that changes have replicated in
the excel too.

What happened when we recorded a macro?

'_l ne SN S >l DA>IC L
&% File Edit View Insert
2] &= - =

‘oject - VBAProject

2 = |[=] =

=-%% VBAProject (Book1)
=& Microsoft Excel Objects
i i Sheetl (Sheet1)
3% ThisWorkbook
Modules

X

Format

Debug Run

wy P o

Tools Add-Ins

@ WS

Window

@

Help
Ln 31, Col 1

| (General)

\/] 'EnterText

Subkb EnterText ()

0]
]

iterText Macro

Ctcxrl+Shiftc+N

[
v

10
e

rboard Shortcut:
ActiveCell.FormualaR1Cl =
Range ("A2") .Select
ActiveCell.FormulaR1Cl =
Range ("A2") .Select
Selection.Copy
Selection.PasteSpecial Paste:=xl1lPasteValues,
:=False, Transpose:=False
Range ("A1:22") .Select
Range ("A2") .Activate
Selection.Font.Bold =
With Selection.Font
.Name = "Calibri™
«Size = 16
.Strikethrough =
.Superscript = False
-.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
. ThemeColor = xlThemeColorLightl
. TintAndShade = 0
. ThemeFont = xl1ThemeFontMinor
End Wich
End Sub

"Rahul™

"=NOW () "

False

Cperation:=xl1None,

SkipBlanks

[l If you store one or more macros in a
workbook, the file must be saved as a
macro-enabled file type.

[l In other words, the file must be saved
with an XLSM extension rather than
the normal XLSX extension.

[’ While saving your file a dialog box will
appear reminding you to save it as a
macro enabled file.

Saving Workbooks with Macro

Microsoft Excel X

The following features cannot be saved in macro-free workbooks:

0 * VB project
To save a file with these features, click No, and then choose a macro-enabled file type in the File Type list.

To continue saving as a macro-free workbook, click Yes.

Yes No Help

Limitations of Recording a Macro

Macro recorder is great at following you in Excel and recording your exact steps, but it may fail
you when you need it to do more.

[
[

You can't execute a code without selecting the object.
You can't create a custom function with a macro recorder.

You can't run codes based on Events: In VBA you can use many events - such as opening a workbook,

adding a worksheet, double-clicking on a cell, etc, to run a code associated with that event. You can
use a macro recorder to do this.

You can't create loops with a macro recorder

You can’t analyze conditions: You can check for conditions within the code using macro recorder. If
you write a VBA code manually, you can use the IF Then Else statements to analyze a condition and
run a code if true (or another code if false).

You can't pass arguments in a macro procedure: When you record a macro, it will never have any

arguments. A subroutine can take input arguments that can be used within the macro to perform a
task.

