INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

Conditional Statements

[l Often while designing a code we are bound to verify functionalities based on certain

conditions and make decisions according to the output of the conditional statement.

[l Conditional Statements are used in programming languages to perform a set of actions

depending on the condition specified by the programmer that evaluates to true or false.

[These are mainly used to decide the execution flow. If the condition evaluates to true,
execute a certain set of actions and if the condition evaluates to false then perform

another set of actions.

Sl.No
1

Types of Conditional Statements

Conditional Statement

If... Then

If.. Then...Else

If..Elself

Nested Ifs

Select Case

Description

Set of statements are executed only if the
condition is true.

Set of statements under If block are executed
If the condition is true otherwise statements
under else

block will be executed.

Each Else block if again have a conditional
statement

based on which the statements will be
executed.

Placing an If statement inside another if
statement.

Each case statement will have a variable
value,

based on the selection value mentioned in the
select case statement, appropriate case will
be executed.

If Statements

[

If statements execute a set of actions depending on
the condition. If the condition evaluates to true then

the code mentioned in the If block will be executed.
Syntax:

Condlition: This is the required field. Based on the
Boolean result of this condition the action will be
performed. If the result is true then the statements in
the If block will be executed.

If the condition is Null then it is treated as False.

Statements: This set of actions will be performed if

the condition is true.

If condition Then
[statements]

End If

Remaining code

Statement(s)

-

If Statements

Example:

Option Explicit

Sub ifExample()

Dim Obtained_Marks, Total_Marks As Integer
Obtained_Marks = 100

Total_Marks = 100

If (Obtained_Marks = Total_Marks) Then
MsgBox "Student obtained a perfect score”
End If

Debug.Print "Results Published"

End Sub

| Microsoft Excel

Student obtained a perfect score

OK

s s

Results Published

The output from the above code will be a msgbox as shown below and whether the
condition is true or false “Result Published” will be printed in the immediate window.

IF... Then... Else Statements

[l If the condition returns a boolean true, then

the set of actions defined under the if block
will be executed but if the conditional
expression returns a boolean false then the
statements under the else block will be
executed.

Syntax:

Once the code reaches the conditional
statement, it evaluates the value of the
expression. The If-block is executed if the
condition is true and the Else block is
executed if the condition is false. It is not
possible to execute both the If and Else
blocks in a single run.

If (condition) Then
[Statement (s)]

Else

[Statement(s)]
End If

Statement from If
block

,

Remaining code

Statement(s) from
Else block

-

IF... Then... Else Statements

Example:

Sub ifElseExample()
Dim Obtained_Marks, Passing_Marks As Integer
Obtained_Marks = 35 Microsoft Excel
Passing_Marks = 35
If (Obtained_Marks >= Passing_Marks) Then

MsgBox "Student has passed the exam"
Else

MsgBox "Student did not clear the exam”
End If
End Sub

Student has passed the exam

OK

ElselF Statements

[

[
[

To test a second condition we can add
Elself statements to a simple If..Then..Else.
An If statement is allowed to be followed
by multiple Elself statements each
consisting of a conditional statement.
Syntax:

Once the code reaches the conditional
expression, it evaluates either to True or
False. If the condlition is true then the
statements under the 1st IF block will be
executed and the control exists in the
conditional block, but if the expression
returns false then the control will enter the
2nd conditional expressions and repeats
the process.

If(condition) Then

[Statement(s)]

Elself (condition)Then

[Statement (s)]

End If
End If

True @ False

Statement(s) from

1= If Block

Rest of the code

|

True

Statement(s) from
2" If block

Condition2

\ 4

False :

Statement(s) from
2" Else

ElselF Statements

Example:

Sub ifElseifExample()

Dim Obtained_Marks, Passing_Marks As Integer
Obtained_Marks = 60

Passing_Marks = 35

If (Obtained_Marks < Passing_Marks) Then

MsgBox "Student did not clear the exam”
Elself (Obtained _Marks >= 60) Then

MsgBox "Student has cleared the exam with firstclass”

Else

Msgbox “Student passed with second class”
End If

End Sub

EMicrosoft Excel

w Student has cleared the exam with firstclass

OK

Nested IF Statements

[
[

VBA allows us to place control statements inside another control statement.

Placing an If statement inside another if statement. This procedure of placing one control
statement within another is called to be nested.

Control structures in VBA can be nested to as many levels as you wish. By intending the
body of each control statement, it will be better readable.

SyntGX' If (condition) Then
Statement(s)

If(condition) Then
Statement(s)
Elself (condition) Then
Statement(s)
Else

Statement(s)
End If
Else
Statement(s)
End If

Nested IF Statements

Example:

Sub NestedIFExample()
Dim Obtained_Marks
Obtained_Marks = 67
If (Obtained_Marks > 0) Then

If (Obtained_Marks = 100) Then

MsgBox "Student has got a perfect score”
Elself (Obtained_Marks >= 60) Then
MsgBox "Student has cleared the exam with first class"

Elself (Obtained_Marks >= 50) Then
MsgBox "Student cleared the exam with second class”
Elself (Obtained_Marks >= 35) Then
MsgBox "Student has cleared"
Else
MsgBox " Student did not clear the exam"
End If
Elself (Obtained_Marks = 0) Then
MsgBox "Student scrored a zero)"
Else
MsgBox "student did not attend the exam"
End If
End Sub

| DO T ST]
| Microsoft Excel X

Student has cleared the exam with first class

OK

Select Case

[l From the above nested if statement we have seen how cumbersome

it is to deal with multiple if..else statements. If you misplace a single If
or Else then it is difficult to debug and hence it is more error-prone.
To deal with such a problem we can use Select Case.

In Select Case, you can enter the block of code to be executed under gglect Case testexpression

a particular case statement. Each case statement will have a [Case expressionlist-n]

variable value to identify. Before we begin the execution, we have to [statements-n]]

specify which case is to be executed by entering the variable value in [Case Else]

the Select Case Statement. [elsestatements]
End Select

[Select Case has a 3 part syntax:

1.

2.

Testexpression: Mandatory field and takes any numeric or string
expression as input.

expressionlist-n: List of expressions using which the appropriate
case will be selected.

statements-n: Set of actions performed if the test expression
matches the case expression list.

elsestatements: Set of actions to be executed if the test expression
does not match any of the case statements.

Select Case

Example: You can try to run the code by putting different marks

Sub selectExample()

Dim marks As Integer

marks = InputBox("Enter Total Marks")
Select Case marks

Case 100
MsgBox

Case 60 To 99
MsgBox

Case 50 To 59

MsgBox "
Case 35 To 49

MsgBox
Case 1 To 34

MsgBox
Case O

MsgBox
Case Else

MsgBox

End Select
End Sub

"Perfect score"”

"First Class"

Second class”

"Pass"

"Not Cleared"”

"Scored zero"

"Did not attend the exam”

