INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

Debuggin

gging
[When you write VBA, or any programming language,
you are going to encounter errors in it, or should we
call them unintended features? Basically you can't
write any substantial amount of code without needing
to fix errors and make sure that it works as it's

supposed to.

[’ The debugging tools in VBA will not only let you fix
problems, they will also allow you to gain a better
understanding of code, so can be used to familiarize

yourself with code written by someone else.

[l To explore the debugging tools provided by VBA, we

will use this simple code.

Sub

End

ListNumbers (

Dim counter
Dim myRange
Set myRange
For counter

myRange.
Next counter

ChangeFont
Sub

)

As Integer

As Range

= Range ("B11")
= 0 To 10

Offset (counter) .Value = counter - 1

Sub

End

ChangeFont ()

ActiveCell.Font.Bold = True

Sub

Debugging Tools

[l There are ways the VBA editor allows us
to interact and run the code.

[l If you look at the Debug menu in the VBA
editor this is what you will see

[l Almost all the tools (or commands) have
a shortcut key and you should learn
these as its a much quicker way to
debug, rather than going to the menu all

the time.

Insert Format

| 9
5_']_(Gener
5 Sul
k1)
Objects
etl)
ok
En
Su]

erugiﬁun Tools Add-Ins Window

5=

v
Il

Compile VBAProject
Step Into

Run To Cursor

Add Watch...

Quick Watch...

Toggle Breakpoint
Clear All Breakpoints

F8

Ctrl+F8

Shift+F2
F9
Ctrl+Shift+F9

Runnmg Code: F5 & F8

When you place the cursor into a sub, either with a mouse
or using the keyboard, press F5 to run that sub. It is the
easiest way to find out if your code throws an error,

however it is not useful for logical errors

[l With the cursor in the sub, press F8 to execute one line of

code at a time.

[The next line to be executed will be highlighted in yellow,

with a yellow arrow pointing to it.

[l Each time you press F8, the line highlighted in yellow is

executed, and the next line to be run is highlighted.

[l This is a good way to understand where your code is wrong

especially when you have loops in your code.

Sub ListNumbers(

Dim counter
Dim myRange
Set myRange
For counter

myRange.
Next counter

ChangeFont
End Sub

)

L]

s Integer

s Range
Range ("B11")
0 To 10

LU | -

Offset (counter) .Value = counter - 1

Stepping Over Code : SHIFT + F8

[l If your code calls another sub, you may not want

to step through each line of code in that 2nd sub. o
In this case you can 'step over'the 2nd sub and fiiﬁi;?;‘;ii“’
. End Sub
immediately continue executing the code in your
Ist sub.
[’ When code execution gets to the call for ChangeFont
2| End Sub

Changefont, | can press SHIFT + F8, the

Suk ChangeFont ()

Changefont sub is executed, but we don't have to
wait for this, and the code pauses again at the

next line which is the End Sub statement.

Breakpoints : F9

[l A breakpoint is a line in your code where you tell
VBA to pause and wait.

[l To create a breakpoint you can either position the
cursor on the desired line and press F9, or just
click in the margin beside that line. A dark
red/brown dot will appear beside the line in
question to indicate a breakpoint has been set,
and that line of code is highlighted in the same
color.

[l Clicking on the dot again will remove the
breakpoint, as will pressing F9

[l You can use breakpoints to interrupt the code in a
function and check that it is working.

Sub ListNumbers|()

Dim counter As Integer
Dim myRange As Range
Set myRange = Range ("B1l1l")

-l or counter = 0 To 10

myRange.Offset (counter) .V:

Next counter
ChangeFont
End Sub

[l As you are stepping through code, you'll notice
that the next line to execute is highlighted in
yellow, and has a yellow arrow pointing to it in
the margin.

[l You can use your mouse to drag this arrow to
whatever line you want in the same sub
(provided it's an executable line), and execution
will then continue from there.

[l This is extremely useful if you want to alter the
value of something or fix a bug and then
re-execute the code to see if your changes have

the desired effect.

Changing the Next Line to Execute

&

Suk ListNumbers ()

Dim counter As Integer
Dim myRange As Range

Set myRange = Range ("B11l")
For counter = 0 To 20

myRange.Offset (counter) .Value = counter - 1
Next counter

ChangeFont
End Sub

Checking the Value of Variables

There are a number of ways to do this, the easiest is to just hover your mouse over

the variable while your are debugging:

Dim
Dim
Set
For

Fnd Suab

counter
myRange
myRange
counter

myRange.

Next counter
ChangeFont

Subk ListNumbers|()

As Integer

As Range
Range ("B11")
0 To 20

Offset (counter) .Value = counter - 1
counter = TJ

Checking the Value of Variables

Debug.Print

[

Or you can use the Debug.Print statement. This will g;ﬁ
print the vale of a variable to the Immediate Set
Window. CTRL + G to show the Immediate Window. e
Insert the Debug.Print statement directly into your

code like so: >

You can also type the statement directly into the |
Immediate window (and hit enter) and get the
variable's value

' AR dd e 0 W AN RIS N e T N

counter
myRange
myRange
counter

s Integer

s Range
Range ("B11")
0 To 20

[- =

myRange .Offset (counter) .V
Debug.Print counter

Next counter

Immediate

Debug.Print counter

0

Watches

[l You can Watch a variable and its value is
shown in the Watch window. If your Watch
window isn't showing, turn it on from the
View menu in the VBA editor.

[’ To watch a variable, place the cursor in the
variable, right click and then click on Add

Watch.

[l If we are just interested in seeing the value
as it changes then choose Watch
Expression, otherwise choose the
appropriate Break option.

1T

1t

1t

) Add Watch X
Cndbincik
& Paste I
Cancel |
Toggle —Context
944 3 . |ListNumb
=y Object Browser Procedure ||s ddeal ZI Help |
Add Watch Module: |Module1 =)
»= RunTo Cursor Project: VBAProject
o Set Next Statement Watch Type
& Show Next Statement (¢ Watch Expression
Definition " Break When Value Is True
= Liide " Break When Value Changes
| Watches
] Expression Value | Type Context
T4 counter 4 Integer Module1.ListNumbers

