

Subject: Calculus

Chapter: Unit 1 & 2

Category: Assignment 1

1. Evaluate the following limit.

$$\frac{2(-3+h)^2-18}{h}$$

2. Determine if the following function is continuous or discontinuous at (a) x = 4, (b) x = 6?

$$g(x) = \{2x$$

$$x < 6x - 1$$

3. Solve the following limit:

$$\frac{x-9}{3-\sqrt{x}}$$

4. Determine if the following function is continuous or discontinuous at

(a) 
$$x = -1$$
, (b)  $x = 0$ , (c)  $x = 3$ ?

$$f(x) = \frac{4x+5}{9-3x}$$

5. Evaluate each of the following limits.



6. Given the function,

$$g(y) = \{y^2 + 5 \quad \text{if } y < -21 - 3y \quad \text{if } y \ge -2\}$$

Compute the following limits.

- (a) g(y)
- (b) g(y)

7. Use the Product Rule to find the derivative of;

$$f(t) = (4t^2-t)(t^3 - 8t^2 + 12)$$

8. Use the Quotient Rule to find the derivative of;

$$R(w) = \frac{3w + w^4}{2w^2 + 1}$$

- 9. Differentiate;  $f(x) = 2e^x 8^x$
- 10. Differentiate;  $y = z^5 e^z \ln(z)$

CHAPTER -1,2,3,4

ASSIGNMENT

11. Using chain rule Differentiate the following;

a) 
$$f(x) = (6x^2 + 7x)^4$$

b) 
$$f(t) = 5 + e^{4t + t^7}$$

12. Determine the second derivative of

a) 
$$z = ln(7 - x^3)$$

b) 
$$Q(v) = \frac{2}{(6+2v-v^2)^4}$$

c) 
$$f(t) = ln(1 + t^2)$$

13. For  $f(x) = 5x^3 + 2x^2 - 3x$ ; analyse the concavity.

14. Find the maximum and minimum value of the function

$$x^3 - 3x^2 - 9x + 12$$

15. Find the maximum and minimum value of the function

$$4x^3 - 18x^2 + 24x - 7$$

16. Sketch the curve for the following function;

$$f(x) = x^2(x+3)$$

17. Sketch a detailed graph for the following function.

$$f(x) = 3x^2 - 6x$$

18. If 
$$f(x^2 - 1) = x^4 - 7x^2 + k_1$$
 and  $f(x^3 - 2) = x^6 - 9x^3 + k_2$  then the value of  $(k_2 - k_1)$  is

19. Which of the following is not an odd function?

A. 
$$f(x) = -x^3$$

B. 
$$f(x) = x^5$$

C. 
$$f(x) = x^2 - x$$

D. 
$$f(x) = |x|^3$$

20. If f:  $R \rightarrow R$  is defined by  $f(x) = x^2 - 3x + 2$ , find f(f(x)).