

Subject: Calculus

Chapter: Unit 2

Category: Practice questions

For problems below find the derivative of the given function.

1.
$$f(x) = 6x^3 - 9x + 4$$

2.
$$y = 2t^4 - 10t^2 + 13t$$

3.
$$g(z) = 4z^7 - 3z^{-7} + 9z$$

4. f (x) =
$$10\sqrt[5]{x^3} - \sqrt{x^7} + 6\sqrt[3]{x^8} - 3$$

5.
$$f(t) = \frac{4}{t} - \frac{1}{6t^3} + \frac{8}{t^5}$$

6.
$$R(z) = \frac{6}{\sqrt{z^3}} + \frac{1}{8z^4} - \frac{1}{3z^{10}}$$

7.
$$z = x(3x^2 - 9)$$

8.
$$g(y) = (y - 4) (2y + y^2)$$

9. h(x) =
$$\frac{4x^3-7x+8}{x}$$

10. f (t) =
$$(4t^2 - t)$$
 (t³ -8t² +12)

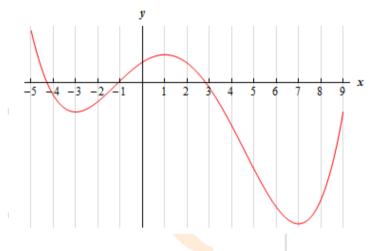
11.
$$y = (1+\sqrt{x^3}) (x^{-3} - 2\sqrt[3]{x})$$

12. g(x) =
$$\frac{6x^2}{2-x}$$

13. R(w) =
$$\frac{3w+w^4}{2w^2+1}$$

14.
$$R(w) = 3w \log(w)$$

15.
$$y = z^5 - e^z \ln(z)$$


$$16.f(x) = (6x^2 + 7x)^4$$

NSTITUTE OF ACTUARIAL & QUANTITATIVE STUDIES

17.
$$f(t) = 5 + e^{4t+t^7}$$

- 18. Find two positive numbers whose product is 750 and for which the sum of one and 10 times the other is a minimum
- 19. Determine the critical points of $f(x) = 5x e^{9-2x}$
- 20. The graph of a function is given below. Determine the intervals on which the function increases and decreases.

21. Differentiate y with respect to x:

a.
$$y = \frac{3}{4x^2} - \frac{12}{x^2\sqrt{x}}$$

b.
$$y = \frac{1}{3x} + \frac{2x^3 + 1}{3\sqrt{x}}$$

- 22. Find an equation of the tangent to the curve at the point whose x coordinate is given: $y = x^2 9x + 13$ where x = 6
- 23. Find the coordinates of their stationary points : $y = x 4\sqrt{x}$ where x>0
- 24. Find the range of the values of x , for which f (x) = $x^3 3x^2 9x + 10$ is increasing.
- 25. Find the range of the values of x , for which f (x) = $4x^3 3x^2 6x$ is decreasing.