

Subject: Calculus

Chapter: Unit 4

Category: Practice questions

IACS

1. Determine the order of the differential equation.

a)
$$y' + y = 3y^2$$

b)
$$y''' + y'' y' = 3x^2$$

- 2. Solve the ordinary differential equation (ODE) $\frac{dx}{dt} = 5x 3$ for x(t)
- 3. Solve the ODE with initial condition:

$$\frac{dy}{dx} = 7y^2x^3 \qquad \qquad y(2) = 3$$

4. Which of the following equations is a second-order, linear ODE:

(a)
$$\frac{dy}{dt} = y + 1$$

(b)
$$\frac{d^2y}{dt^2} + y\frac{dy}{dt} + y = 1$$

(c)
$$\frac{d^2y}{dt^2} + t^3y = 0$$

$$(d)\frac{d^3y}{dt^3} + y\frac{dy}{dt} = 1$$

8 QUANTITATIVE STUDIES

- 5. Find the Taylor Series for $f(x) = e^{-6x}$ about x = -4
- 6. Find the Taylor Series for $f(x) = \frac{7}{x^4}$ about x = -3
- 7. Find the Taylor Series for $f(x) = 7x^2-6x + 1$ about x = 2
- 8. Find the Maclaurin series for e^{kx} , where k is a real number.
- 9. Find the Maclaurin series for $(1 + x)^{\mu}$.
- 10. The necessary condition for the Maclaurin expansion to be true for function f(x) is

CHAPTER NAME

PRACTICE/NOTES/ASSIGNMENT

- A. F(x) should be continuous
- B. F(x) should be differentiable
- C. F(x) should exists at every point
- D. F(x) should be continuous and differentiable

INSTITUTE OF ACTUARIAL& QUANTITATIVE STUDIES

CHAPTER NAME

PRACTICE/NOTES/ASSIGNMENT