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Integration 

3

Integration is the process of finding the area of the region under the curve. This is done by drawing as many 

small rectangles covering up the area and summing up their areas. The sum approaches a limit that is equal 

to the region under the curve of a function. 

1

The concept of integration has developed to solve the following types of problems:

1. To find the problem function, when its derivatives are given.

2. To find the area bounded by the graph of a function under certain constraints.



Introduction to Integration
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1.1

Integration can be used to find areas, volumes, central points and many useful things. But it is easiest to start 

with finding the area between a function and the x-axis like this:



Introduction to Integration
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1.1

1.  We could calculate the function at a few points and add up slices of 

width Δx like this

2. We can make Δx a lot smaller and add up many small slices



Introduction to Integration
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1.1

And as the slices approach zero in width, the answer approaches 
the true answer.
We now write dx to mean the Δx slices are approaching zero in 
width.



What is an integral?
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1.2

F(x) is called an antiderivative or Newton-Leibnitz integral or primitive of a function f(x) on an interval I. F'(x) 

= f(x), for every value of x in I.

Integral is the representation of the area of a region under a curve. We approximate the actual value of an 

integral by drawing rectangles. A definite integral of a function can be represented as the area of the region 

bounded by its graph of the given function between two points in the line. The area of a region is found by 

breaking it into thin vertical rectangles and applying the lower and the upper limits, the area of the region is 

summed up. We specify an integral of a function over an interval on which the integral is defined.



General Formulas of Integration
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1.3

1. ∫ 1 dx = x + C

2. ∫ a dx = ax+ C

3. ∫ xn dx = ((xn+1)/(n+1))+C ; n≠1

4. ∫ (1/x) dx = ln |x| + C

5. ∫ ex dx = ex+ C

6. ∫ ax dx = (ax/ln a) + C ; a>0, a≠1



Integration as the reverse of differentiation 
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1.4

Differentiation is the process of finding the derivative of the functions and integration is the process of 

finding the antiderivative of a function. So, these processes are inverse of each other.

The symbolic representation of the antiderivative of a function (Integration) is:

y = ∫ f(x) dx

∫ f(x) dx = F(x) + c.

The constant, c, is known as the  constant of integration. 



Example 
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1.4

y = 3x – x2 

Differentiate w.r.t x 

dy/dx = 3 -2x

Taking the integral of dy/dx 

 y = ∫ dy/dx 

   = ∫ 3-2x dx 

   = 3x  - 2x2 /2 + C

   = 3x – x2 + C 

Hence proved,

 y = ∫ dy/dx 



Definite Integrals 
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2

An integral that contains the upper and lower limits then it is a definite integral. On a real line, x is restricted 

to lie. Riemann Integral is the other name of the Definite Integral.

The area under the curve between points a and b:
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Example 
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Indefinite Integrals 
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3

These are the integrals that do not have a pre-existing value of limits; thus making the final value of integral 

indefinite.                             

                            ∫f(x) dx = F(x) + C

Where C is any constant and the function f(x) is called the integrand.



Example 
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3

Evaluate: ∫ 4ex dx 

Solution: 

∫ 4ex dx = 4ex + C



Improper Integrals 
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4

When we have definite integral with upper limit of ∞, or a lower limit of −∞.  



Properties of Integral Calculus
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5

• The derivative of an integral is the integrand itself. 

                  ∫ f(x) dx = f(x) +C

• Two indefinite integrals with the same derivative lead to the same family of curves and so they are 

equivalent.

                  ∫ [ f(x) dx -g(x) dx] =0

• The integral of the sum or difference of a finite number of functions is equal to the sum or difference of 

the integrals of the individual functions.

                 ∫ [ f(x) dx + g(x) dx] = ∫ f(x) dx + ∫ g(x) dx

• The constant is taken outside the integral sign. 

                ∫ k f(x) dx = k ∫ f(x) dx, where k ∈ R.(constant).



Methods of Integration
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6

Sometimes, the inspection is not enough to find the integral of some functions. There are additional methods 

to reduce the function in the standard form to find its integral. Prominent methods are discussed below.

The methods of integration are:

• Integration by Substitution

• Integration using Partial Fractions

• Integration by Parts

• Integration of Some Particular Function 



Integration by Substitution
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6.1

Sometimes, it is really difficult to find the integration of a function, thus we can find the integration by 

introducing a new independent variable. This method is called Integration By Substitution.

The given form of integral function (say ∫f(x)) can be transformed into another by changing the independent 

variable x to t,

Substituting x = g(t) in the function ∫f(x), we get;

dx/dt = g'(t)

or dx = g'(t).dt

Thus, I = ∫f(x).dx = f(g(t)).g'(t).dt



Question
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6.1

1. Evaluate ∫x√ x+3 dx.

Solution: 

set u=x+3

Differentiate w.r.t x 

du/dx = 1 

du = dx 

But at this stage, we have:

∫x√ x+3 dx = ∫ x√ u du.

We cannot evaluate an integral that has both an x and an u in it. We need to convert the x to an expression 

involving just u.

Since we set u=x+3, we can also state that u−3=x. Thus we can replace x in the integrand with u−3. It will also 

be helpful to rewrite √u as u1/2



Question
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6.1



Integration by Parts
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6.2 

Integration by parts requires a special technique for integration of a function, where the integrand function is 

the multiple of two or more function.

Let us consider an integrand function to be f(x).g(x).

Mathematically, integration by parts can be represented as;

∫f(x).g(x).dx = f(x).∫g(x).dx–∫(f′(x).∫g(x).dx).dx

LIATE is a  rule which helps to decide which term should you differentiate first and which term should you 

integrate first. 

L- logarithm 

I – Inverse 

A- Algebraic 

T – Trigonometric 

E – Exponential 



Question
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6.2 

1. Evaluate  ∫ logx.dx 

Solution:

∫ logx.1.dx

Using the formula,

∫f(x).g(x).dx = f(x).∫g(x).dx–∫(f′(x).∫g(x).dx).dx

 here, f(x) = log x and g(x) = 1 

∫ logx.1.dx = logx. ∫1.dx - ∫ ((logx)'.∫ 1.dx).dx

                    = logx.x -∫ (1/x .x).dx

                    = xlogx - ∫ 1.dx

                    = x logx - x + C

                    = x(logx -1) + C 



Integration of some particular functions 
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6.3 

Many other standard integrals can be integrated using some important integration formulas.



Question
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6.3

1. Find the Integral of the function.

Solution:

The given function can be converted into the standard form

Substituting 

X- 1/7 = t 

Differentiate w.r.t x 

dx = dt 



Question
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6.3 
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