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Why is experimental design important for 

modelling? 
 

 
 

 
 

 

 

 

Output from 
Process 
Model is 
Fitted 
Mathematical 
Function 

The output from modelling is a fitted mathematical function 

with estimated coefficients. For example, in modelling, y, as a 
function of, x, an analyst may suggest the function 

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽11𝑥2 + 𝜖 

in which the coefficients to be estimated are 𝛽0, 𝛽1 𝑎𝑛𝑑 𝛽11. Even 

for a given functional form, there is an infinite number of 
potential coefficient values that potentially may be used. Each 
of these coefficient values will in turn yield predicted values. 

 

What are 
Good 
Coefficient 
Values? 

 

Poor values of the coefficients are those for which the resulting 

predicted values are considerably different from the observed 

raw data “y”. 
 

Good values of the coefficients are those for which the resulting 

predicted values are close to the observed raw data “y”. 

 
The best values of the coefficients are those for which the 

resulting predicted values are close to the observed raw data 

“y”, and the statistical uncertainty connected with each 
coefficient is small. 

 

There are two considerations that are useful for the generation 
of "best" coefficients: 

 

1. Least squares criterion 
2. Design of experiment principles 
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Least Squares 
Criterion 

For a given data set (e.g., 10 (x,y) pairs), the most common 
procedure for obtaining the coefficients for 

 

𝑦 = 𝑓(𝑥, 𝛽) + 𝜖 
 

is the least squares estimation criterion. This criterion yields 
coefficients with predicted values that are closest to the raw 

data in the sense that the sum of the squared differences 

between the raw data and the predicted values is as small as 
possible. 

 

Least squares estimates are popular because 
1. the estimators are statistically optimal (BLUEs: Best 

Linear Unbiased Estimators); 

2. the estimation algorithm is mathematically tractable, in 
closed form, and therefore easily programmable. 

 

How then can this be improved? For a given set of “x” values 

it cannot be; but frequently the choice of the “x” values is 
under our control. If we can select the “x” values, the 

coefficients will have less variability than if the “x” are not 
controlled. 

 

Design of 
Experiment 
Principles 

 

As to what values should be used for the “x's”, we look to 

established experimental design principles for guidance. 

 

The first principle of experimental design is to control the 

values within the “x” vector such that after the “y” data are 
collected, the subsequent model coefficients are as good, in the 

sense of having the smallest variation, as possible. 

 

The key underlying point with respect to design of experiments 

and modelling is that even though (for simple (x,y) fitting, for 

example) the least squares criterion may yield optimal (minimal 
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variation) estimators for a given distribution of “x” values, some 

distributions of data in the “x” vector may yield better (smaller 
variation) coefficient estimates than other “x” vectors. If the 

analyst can specify the values in the “x” vector, then he or she 

may be able to drastically change and reduce the noisiness of 
the subsequent least squares coefficient estimates. 

 

To see the effect of experimental design on process modelling, 

consider the following simplest case of fitting a line: 

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 
 

 

1. ten equi-spaced values across the range of interest? 

2. five replicated equi-spaced values across the range of 
interest? 

3. five values at the minimum of the “x” range and five values 

at the maximum of the “x” range? 
4. one value at the minimum, eight values at the midrange, 

and one value at the maximum? 
5. four values at the minimum, two values at mid-range, and 

four values at the maximum? 

 
or (in terms of "quality" of the resulting estimates for 𝛽0 and 𝛽1) 
perhaps it doesn't make any difference? 

 
For each of the above five experimental designs, there will of 
course be “y” data collected, followed by the generation of least 
squares estimates for 𝛽0 and 𝛽1, and so each design will in turn 

yield a fitted line. 

Suppose the analyst can afford 10 observations (that is, 10 (x,y) 
pairs) for the purpose of determining optimal (that is, minimal 
variation) estimators of 𝛽0 and 𝛽1. What 10 “x” values should be 

used for the purpose of collecting the corresponding 10 “y” 
values? Colloquially, where should the 10 “x” values be 
sprinkled along the horizontal axis so as to minimize the 

variation of the least squares estimated coefficients for 𝛽0 and 

𝛽1 ? Should the 10 values be: 
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What are the basic steps for developing 

an effective model? 
 

 

Basic Steps of Model 
Building 

The basic steps used for model-building are the same across 

all modelling methods. The details vary somewhat from 
method to method, but an understanding of the common 

steps, combined with the typical underlying assumptions 

needed for the analysis, provides a framework in which the 
results from almost any method can be interpreted and 

understood. 

 
The basic steps of the model-building process are: 

1. model selection 

2. model fitting, and 
3. model validation. 

 

These three basic steps are used iteratively until an 

appropriate model for the data has been developed. In the 

model selection step, plots of the data, and assumptions 
about the model are used to determine the form of the model 

to be fit to the data. Then, using the selected model and 

possibly information about the data, an appropriate model- 
fitting method is used to estimate the unknown parameters 

in the model. When the parameter estimates have been 

made, the model is then carefully assessed to see if the 
underlying assumptions of the analysis appear plausible. If 

the assumptions seem valid, the model can be used to 

answer the scientific questions that prompted the modelling 

effort. If the model validation identifies problems with 
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 the current model, however, then the modelling process is 

repeated using information from the model validation step to 
select and/or fit an improved model. 

 
 

A Variation on the 
Basic Steps. 

 
 

The three basic steps of process modelling described in the 

paragraph above assume that the data have already been 

collected and that the same data set can be used to fit all of 
the candidate models. Although this is often the case in 

model-building situations, one variation on the basic model- 

building sequence comes up when additional data are 
needed to fit a newly hypothesized model based on a model 

fit to the initial data. In this case two additional steps, 

experimental design and data collection, can be added to the 
basic sequence between model selection and model-fitting. 

 
Design of Initial 
Experiment 

 
Of course, considering the model selection and fitting before 

collecting the initial data is also a good idea. Without data in 
hand, a hypothesis about what the data will look like is 

needed in order to guess what the initial model should be. 

Hypothesizing the outcome of an experiment is not always 
possible, of course, but efforts made in the earliest stages of 

a project often maximize the efficiency of the whole model- 

building process and result in the best possible models for 
the process. 
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How do I select a function to describe my 

modelling? 
 

 
 

 

 
 

 
 

 
 

Selecting a function 
to Model 

Selecting a model of the right form to fit a set of data usually 

requires the use of empirical evidence in the data, knowledge 

of the process and some trial-and-error experimentation. As 
mentioned previously, model building is always an 

iterative process. Much of the need to iterate stems from the 
difficulty in initially selecting a function that describes the 

data well. Details about the data are often not easily visible 

in the data as originally observed. The fine structure in the 
data can usually only be elicited by use of model-building 

tools such as residual plots and repeated refinement of the 

model form. As a result, it is important not to overlook any of 
the sources of information that indicate what the form of the 

model should be. 

 
Sometimes the different sources of information that need to 

be integrated to find an effective model will be contradictory. 

An open mind and a willingness to think about what the data 
are saying is important. Maintaining balance and looking for 

alternate sources for unusual effects found in the data are 

also important. 
 

Another helpful ingredient in model selection is a wide 
knowledge of the shapes that different mathematical 

functions can assume. Knowing something about the models 

that have been found to work well in the past for different 

application types also helps. A menu of different functions 

provides one way to learn about the function shapes and 

flexibility. 
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How are estimates of the unknown 

parameters obtained? 
 

 
 

 

 
 

 
 

 
 

Parameter 
Estimation in 
General 

After selecting the basic form of the functional part of the 

model, the next step in the model-building process is 

estimation of the unknown parameters in the function. In 
general, this is accomplished by solving an optimization 

problem in which the objective function (the function being 

minimized or maximized) relates the response variable and 
the functional part of the model containing the unknown 

parameters in a way that will produce parameter estimates 

that will be close to the true, unknown parameter values. 
 

The unknown parameters are, loosely speaking, treated as 
variables to be solved for in the optimization, and the data 

serve as known coefficients of the objective function in this 

stage of the modelling process. 
 

In theory, there are as many different ways of estimating 

parameters as there are objective functions to be minimized 
or maximized. However, a few principles have dominated 

because they result in parameter estimators that have good 

statistical properties. The two major methods of parameter 
estimation for process models are maximum likelihood and 

least squares. Both of these methods provide parameter 

estimators that have many good properties. Both maximum 
likelihood and least squares are sensitive to the presence of 

outliers, however. There are also many newer methods of 

parameter estimation, called robust methods, that try to 
balance the efficiency and desirable properties of least 

squares and maximum likelihood with a lower sensitivity to 

outliers. 
 

Although robust techniques are valuable, they are not as well 

developed as the more traditional methods and often require 
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specialized software that is not readily available. Maximum 

likelihood also requires specialized algorithms, in general. 

 

 

How can I tell if a model fits my data? 
 

 
 

 
 

 

 
 

𝑅2 𝑖𝑠 𝑁𝑜𝑡 𝐸𝑛𝑜𝑢𝑔ℎ! Model validation is possibly the most important step in the 
model building sequence. It is also one of the most 

overlooked. Often the validation of a model seems to consist 

of nothing more than quoting the 𝑅2 statistic from the fit 

(which measures the fraction of the total variability in the 
response that is accounted for by the model). Unfortunately, 

a high 𝑅2 value does not guarantee that the model fits the 

data well. Use of a model that does not fit the data well 
cannot provide good answers to the underlying scientific 

questions under investigation. 

 

Main Tool: 
Graphical Residual 
Analysis 

 

There are many statistical tools for model validation, but the 

primary tool for most process modelling applications is 
graphical residual analysis. Different types of plots of the 

residuals from a fitted model provide information on the 

adequacy of different aspects of the model. Numerical 

methods for model validation, such as the 𝑅2 statistic, are 
also useful, but usually to a lesser degree than graphical 

methods. Graphical methods have an advantage over 
numerical methods for model validation because they readily 

illustrate a broad range of complex aspects of the 

relationship between the model and the data. Numerical 
methods for model validation tend to be narrowly focused on 

a particular aspect of the relationship between the model and 

the data and often try to compress that information into a 
single descriptive number or test result. 

 
Numerical Methods' 

 
Numerical methods do play an important role as 
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Forte confirmatory methods for graphical techniques, however. 

There are also a few modelling situations in which graphical 
methods cannot easily be used. In these cases, numerical 

methods provide a fallback position for model validation. One 

common situation when numerical validation methods take 
precedence over graphical methods is when the number of 

parameters being estimated is relatively close to the size of 

the data set. In this situation residual plots are often difficult 
to interpret due to constraints on the residuals imposed by 

the estimation of the unknown parameters. 

 
Residuals 

 
The residuals from a fitted model are the differences between 

the responses observed at each combination values of the 

explanatory variables and the corresponding prediction of the 
response computed using the regression function. 

Mathematically, the definition of the residual for the ith 
observation in the data set is written 

 

𝑒𝑖  = 𝑦𝑖 − 𝑦̂𝑖  where 𝑦̂𝑖  = 𝑓(𝑥⃗ ⃗𝑖, 𝛽) 
 

with 𝑦𝑖 denoting the ith response in the data set and 
𝑥⃗ 𝑖⃗   represents the list of explanatory variables, each set at the 
corresponding values found in the ith observation in the data 
set. 
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If my current model does not fit the data 

well, how can I improve it? 
 

 
 

 

 
 

 
 

 
 

What to do next? Validating a model using residual plots, formal hypothesis 

tests and descriptive statistics would be quite frustrating if 

discovery of a problem meant restarting the modelling 
process back at square one. Fortunately, however, there are 

also, techniques and tools to remedy many of the problems 
uncovered using residual analysis. In some cases, the model 

validation methods themselves suggest appropriate changes 

to a model at the same time problems are uncovered. This is 
especially true of the graphical tools for model validation, 

though tests on the parameters in the regression function 

also offer insight into model refinement. 

 

Methods for Model 
Improvement 

 

1. Updating the Function Based on Residual Plots 
2. Accounting for Non-Constant Variation Across the Data 
3. Accounting for Errors with a Non-Normal Distribution 
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