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Why is experimental design important for

[ ]
modelling?
Output from The output from modelling is a fitted mathematical function
Process with estimated coefficients. For example, in modelling, y, as a
Model is function of, x, an analyst may suggest the function
Fitted
Mathematical y=Lo+ f1x + L11x%+ €
Function
in which the coefficients to be estimated are S, f1 and f11. Even
for a given functional form, there is an infinite number of
potential coefficient values that potentially may be used. Each
of these coefficient values will in turn yield predicted values.
Poor values of the coefficients are those for which the resulting
What are predicted values are considerably different from the observed
Good raw data “y”.
Coefficient
Values? Good values of the coefficients are those for which theresulting
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predicted values are close to the observed raw data “y”.

The best values of the coefficients are those for which the
resulting predicted values are close to the observed rawdata

y”, and the statistical uncertainty connected with each
coefficient is small.

There are two considerations that are useful for the generation
of "best" coefficients:

1. Least squares criterion
2. Design of experiment principles




Least Squares
Criterion

Design of
Experiment
Principles
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For a given data set (e.g., 10 (x,y) pairs), the most common
procedure for obtaining the coefficients for

y=f@EpB) +e

is the least squares estimation criterion. This criterion yields
coefficients with predicted values that are closest to the raw
data in the sense that the sum of the squared differences
between the raw data and the predicted values is as smallas
possible.

Least squares estimates are popular because
1. the estimators are statistically optimal (BLUEs: Best
Linear Unbiased Estimators);
2. the estimation algorithm is mathematically tractable, in
closed form, and therefore easily programmable.

How then can this be improved? For a given setof “x” values
it cannot be; but frequently the choice of the “x” values is
under our control. If we can select the “x” values, the

coefficients will have less variability than if the “x” are not
controlled.

As to what values should be used for the “x's”, we lookto
established experimental design principles forguidance.

The first principle of experimental design is to control the
values within the “x” vector such that after the “y” data are
collected, the subsequent model coefficients are as good, inthe
sense of having the smallest variation, as possible.

The key underlying point with respect to design of experiments
and modelling is that even though (for simple (x,y) fitting, for
example) the least squares criterion may yield optimal (minimal
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variation) estimators for a given distribution of “x” values, some
distributions of data in the “x” vector may yield better (smaller
variation) coefficient estimates than other “x” vectors. If the
analyst can specify the values in the “x” vector, then he or she
may be able to drastically change and reduce the noisiness of
the subsequent least squares coefficient estimates.

To see the effect of experimental design on process modelling,
consider the following simplest case of fitting a line:

y=PBo+pPix+e€

Suppose the analyst can afford 10 observations (that is, 10 (x,y)
pairs) for the purpose of determining optimal (that is, minimal
variation) estimators of fpand ;. What 10 “x” values should be
used for the purpose of collecting the corresponding 10 “y”
values? Colloquially, where should the 10 “x” values be
sprinkled along the horizontal axis so as to minimize the
variation of the least squares estimated coefficients for fyand

B1? Should the 10 values be:

1. ten equi-spaced values across the range ofinterest?

2. five replicated equi-spaced values across the range of
interest?

3. five values at the minimum of the “xX” range and five values
at the maximum of the “x” range?

4. one value at the minimum, eight values at the midrange,
and one value at the maximum?

5. four values at the minimum, two values at mid-range, and
four values at the maximum?

or (in terms of "quality" of the resulting estimates for fypand ;)
perhaps it doesn't make any difference?

For each of the above five experimental designs, there will of
course be “y” data collected, followed by the generation of least
squares estimates for fpand £, and so each design will inturn
yield a fitted line.




What are the basic steps for developing
an effective model?

Basic Steps of Model The basic steps used for model-building are the same across
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all modelling methods. The details vary somewhat from
method to method, but an understanding of the common
steps, combined with the typical underlying assumptions
needed for the analysis, provides a framework in which the
results from almost any method can be interpreted and
understood.

The basic steps of the model-building process are:
1. model selection
2. model fitting, and
3. model validation.

These three basic steps are used iteratively until an
appropriate model for the data has been developed. In the
model selection step, plots of the data, and assumptions
about the model are used to determine the form of the model
to be fit to the data. Then, using the selected model and
possibly information about the data, an appropriate model-
fitting method is used to estimate the unknown parameters
in the model. When the parameter estimates have been
made, the model is then carefully assessed to see if the
underlying assumptions of the analysis appear plausible. If
the assumptions seem valid, the model can be used to
answer the scientific questions that prompted the modelling
effort. If the model validation identifies problems with




A Variation on the
Basic Steps.

Design of Initial
Experiment

Data Analysis

Notes

the current model, however, then the modelling process is
repeated using information from the model validation step to
select and/or fit an improved model.

The three basic steps of process modelling described in the
paragraph above assume that the data have already been
collected and that the same data set can be used to fit all of
the candidate models. Although this is often the case in
model-building situations, one variation on the basic model-
building sequence comes up when additional data are
needed to fit a newly hypothesized model based on a model
fit to the initial data. In this case two additional steps,
experimental design and data collection, can be added to the
basic sequence between model selection and model-fitting.

Of course, considering the model selection and fitting before
collecting the initial data is also a good idea. Without data in
hand, a hypothesis about what the data will look like is
needed in order to guess what the initial model should be.
Hypothesizing the outcome of an experiment is not always
possible, of course, but efforts made in the earliest stages of
a project often maximize the efficiency of the whole model-
building process and result in the best possible models for
the process.




How do I select a function to describe my
modelling?

Selecting a function  Selecting a model of the right form to fit a set of data usually

to Model requires the use of empirical evidence in the data, knowledge
of the process and some trial-and-error experimentation. As
mentioned previously, model building is always an
iterative process. Much of the need to iterate stems from the
difficulty in initially selecting a function that describes the
data well. Details about the data are often not easily visible
in the data as originally observed. The fine structure in the
data can usually only be elicited by use of model-building
tools such as residual plots and repeated refinement of the
model form. As a result, it is important not to overlook any of
the sources of information that indicate what the form of the
model should be.

Sometimes the different sources of information that need to
be integrated to find an effective model will be contradictory.
An open mind and a willingness to think about what the data
are saying is important. Maintaining balance and looking for
alternate sources for unusual effects found in the data are
also important.

Another helpful ingredient in model selection is a wide
knowledge of the shapes that different mathematical
functions can assume. Knowing something about the models
that have been found to work well in the past for different
application types also helps. A menu of different functions
provides one way to learn about the function shapes and
flexibility.
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How are estimates of the unknown
parameters obtained?

Parameter
Estimation in
General
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After selecting the basic form of the functional part of the
model, the next step in the model-building process is
estimation of the unknown parameters in the function. In
general, this is accomplished by solving an optimization
problem in which the objective function (the function being
minimized or maximized) relates the response variable and
the functional part of the model containing the unknown
parameters in a way that will produce parameter estimates
that will be close to the true, unknown parameter values.

The unknown parameters are, loosely speaking, treated as
variables to be solved for in the optimization, and the data
serve as known coefficients of the objective function in this
stage of the modelling process.

In theory, there are as many different ways of estimating
parameters as there are objective functions to be minimized
or maximized. However, a few principles have dominated
because they result in parameter estimators that have good
statistical properties. The two major methods of parameter
estimation for process models are maximum likelihood and
least squares. Both of these methods provide parameter
estimators that have many good properties. Both maximum
likelihood and least squares are sensitive to the presence of
outliers, however. There are also many newer methods of
parameter estimation, called robust methods, that try to
balance the efficiency and desirable properties of least
squares and maximum likelihood with a lower sensitivity to
outliers.

Although robust techniques are valuable, they are not as well
developed as the more traditional methods and often require




specialized software that is not readily available. Maximum
likelihood also requires specialized algorithms, in general.

How can I tell if a model fits my data?

R?is Not Enough!

Main Tool:
Graphical Residual
Analysis

Numerical Methods'
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Model validation is possibly the most important step in the
model building sequence. It is also one of the most
overlooked. Often the validation of a model seems to consist
of nothing more than quoting the R? statistic from the fit
(which measures the fraction of the total variability in the
response that is accounted for by the model). Unfortunately,
a high R?value does not guarantee that the model fits the
data well. Use of a model that does not fit the data well
cannot provide good answers to the underlying scientific
questions under investigation.

There are many statistical tools for model validation, but the
primary tool for most process modelling applications is
graphical residual analysis. Different types of plots of the
residuals from a fitted model provide information on the
adequacy of different aspects of the model. Numerical
methods for model validation, such as the R? statistic, are
also useful, but usually to a lesser degree than graphical
methods. Graphical methods have an advantage over
numerical methods for model validation because they readily
illustrate a broad range of complex aspects of the
relationship between the model and the data. Numerical
methods for model validation tend to be narrowly focused on
a particular aspect of the relationship between the model and
the data and often try to compress that information into a
single descriptive number or test result.

Numerical methods do play an important role as




Forte
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confirmatory methods for graphical techniques, however.
There are also a few modelling situations in which graphical
methods cannot easily be used. In these cases, numerical
methods provide a fallback position for model validation. One
common situation when numerical validation methods take
precedence over graphical methods is when the number of
parameters being estimated is relatively close to the size of
the data set. In this situation residual plots are often difficult
to interpret due to constraints on the residuals imposed by
the estimation of the unknown parameters.

The residuals from a fitted model are the differences between
the responses observed at each combination values of the
explanatory variables and the corresponding prediction of the
response computed using the regression function.
Mathematically, the definition of the residual for the ith
observation in the data set is written

e = yi —ywherey = f(, 5)

with y;denoting the ith response in the data set and

X; represents the list of explanatory variables, each set at the
corresponding values found in the ith observation in the data
set.




If my current model does not fit the data
well, how can I improve it?

What to do next?

Methods for Model
Improvement
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Validating a model using residual plots, formal hypothesis
tests and descriptive statistics would be quite frustrating if
discovery of a problem meant restarting the modelling
process back at square one. Fortunately, however, there are
also, techniques and tools to remedy many of the problems
uncovered using residual analysis. In some cases, the model
validation methods themselves suggest appropriate changes
to a model at the same time problems are uncovered. This is
especially true of the graphical tools for model validation,
though tests on the parameters in the regression function
also offer insight into model refinement.

1. Updating the Function Based on Residual Plots
2. Accounting for Non-Constant Variation Across the Data
3. Accounting for Errors with a Non-Normal Distribution
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