INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES




Today’s Agenda

1. Data Management

2. Learning the need for data management on databases before performing analysis.
Performing

3. operations such as splitting data, addition of derived variables, replacing values
,fixing invalid values

4. and removing duplicates in R.



What are Variables?

[E

. Variables are used to store values in memory.

. We can store integers, decimals, characters, words or
sentences in a variable.

. In order to assign value to a variable, use the equal(=) sign.

x=1

.y=2.0

. name = “Indrani Sen”

N

o 0B~ W



Rules for writing identifiers in R

* |dentifiers can be a combination of letters ,digits, periods,under
scores

e |t must start with a letter or period

e If it starts with a period it cant be followed by a digit

 Reserved words in R cannot be used as identifiers



Valid variables

> .x1=100
>p_123=200
>q_=20

> result_mean=20



Invalid variables

> .1x=10

Error: unexpected symbol in ".1x"

> resultsS=10

Error: unexpected '='in "resultsS="

> e@mail="indrani@gmail.com”

Error in getClass(cl) : “eigen” is not a defined class



Data types

 character: “cloudy’, "male’

* numeric: 1,0,80

« integer: 2L (the L tells R to store this as an integer)
* |logical: TRUE, FALSE

« complex: 1+4i (complex numbers with real and imaginary parts)



Data types

 character: “cloudy’, "male’

* numeric: 1,0,80

« integer: 2L (the L tells R to store this as an integer)
* |logical: TRUE, FALSE

« complex: 1+4i (complex numbers with real and imaginary parts)



Data types

€ Rstudio

File Edit Code VNiew Plots Session Build Debug Profile Tools Help
o - | O o - = Addins -

Console Terminal

> x=1

> typeof (x)

[1] "double"

> p=as.1integer (l)
> typeof(p)

[1] "integer"

> class(z)

[1] "numeric"

> class(p)

[1] "1integer"

> |



Data structures

* R’s base data structures can be organized by their dimensionality (1d,

2d, or nd) and
 whether they’re homogeneous (all contents must be of the same type)

or heterogeneous (the contents can be of different types).

10



Data structures

Homogeneous Heterogeneous
1d Atomic vector List
2d Matrix Data frame

nd Array

11



Vector Data structures

 The basic data structure in R is the vector.
e \ectors come in two flavors:
 Atomic vectors and lists.

« They have three common properties:
* Type, typeof(), what it is.
* Length, length(), how many elements it contains.

« Attributes, attributes(), additional arbitrary metadata.

12



Attributes?

>v1=c(10,20,30,40,50)
> attributes(v1)

NULL
>names(v1)=1:5

> V]

12345

10 20 30 40 50

Some attributes:

class, comment, dim, dimnames, names,

row.names

13


https://stat.ethz.ch/R-manual/R-devel/library/base/help/class.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/comment.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/dim.html

Attributes?

> names(v1)=letters|1:5]
> V]

abcde

1020 3040 50

>comment(v1)="This is a 5 number list
equally spaced at 10"

> attributes(v1)

Snames

[1]"a" "b" "c" "d" "e

Scomment

[1] "This is a 5 number list equally
spaced at 10"

14



Data structures

* There are four common types of atomic vectors :
* Integer

* double (often called numeric)

* Character

* logical

e Complex

15



Double

> dbl_var=c(1.25,2.34,4.56,5.67,2.333)
> print(dbl_var)

[1] 1.250 2.340 4.560 5.670 2.333

> typeof(dbl_var)

[1] "double”

> class(dbl_var)

[1] "numeric"

>



Integer

> print(int_var)

By default numeric variables are double
(11 1 4 56 7 8 9101

You have to create Integer variables ,
after suffixing with L > typeof(int_var)

[1] "double”

> int_var=c(1L,4L,5L,6L,7L,8L9L,101L)
> typeof(int_var)

[1] "integer

> class(int_var)

[1] "integer"

>



Creating numeric vector with range

. var_num_list=c(1:20)

> print(var_num_list)

111 234567891011121314151617 181920
> typeof(var_num_list)

[1] "integer’



Seq() method

Generate regular sequences. seq is a standard generic with a default method.
Arguments

from, to: the starting and (maximal) end values of the sequence. Of length 1
unless just from is supplied as an unnamed argument.

By : number: increment of the sequence.

length.out :desired length of the sequence. A non-negative number, which for
seq and seq.int will be rounded up if fractional.

along.with: take the length from the length of this argument.



Character vectors

v_char=c("Mumbai", "Kolkata","Srinagar","Delhi","Lukhnow")
print(v_char)

[1] "Mumbai" "Kolkata" "Srinagar" "Delhi" "Lukhnow"
> typeof(v_char)

[1] "character"

> class(v_char)

[1] "character"

> length(v_char)

[1] 5

> 1s.character(v_char)

[1] TRUE

> i1s.integer(v_char)

[1] FALSE

VVVVVVVVVYVYYVYVYY



Coercion
Coercion. When you call a function with an argument of the wrong type,
R will try to coerce values to a different type so that the function will work.

Values are converted to the simplest type required to represent all
information.

The ordering is roughly logical < integer < numeric < complex < character <
list.



Example of coercion (numeric to character)

> v_str=c("Mumbai",107) > typeof(v_str)
> print(v_str) [1] "character"
[1] "Mumbai" "101" > typeof(v_int)
> v_int=c(100,"1",200,"4") [1] "character"

> print(v_int)
[1]"100" "1" "200" "4"



Logical to numeric

» v_logic=c(TRUE, FALSE,T,F,1,0)

> > print(v_logic)

>»[1] 101010

» > v_logic=c(TRUE,FALSE,T,F,100,200)
> > print(v_logic)

> [1] 1 01 0 100 200



Aggregate functions with numeric vector

» var_num=c(1L,2L,5.6,7.8,9.78)

> > print(var_num)

1

1

YV VVY

1.00 2.00 5.60 7.80 9.78

> iypeof(var_num)

"double”

> E1ass(var_num)
(1.

"numeric”

> sum(var_num)
[1] 26.18

>mean (var_num)
[1] 5.236
>median(var_num)
[1] 5.6

> max(var_num)
[1] 9.78

> min(var_num)

[1] 1



Aggregate functions with logical vector

When a logical vector is coerced to an integer or double,
TRUE becomes 1 and FALSE becomes 0.

This is very useful in conjunction with sum() and mean()
Sum() gives the total number of TRUE values

Mean() give the % of values which are true



Lists

Lists are different from atomic vectors because their elements
can be of any type, including lists.

You construct lists by using list() instead of ¢():



Example student list

> student=list(101,c("Sunil"),c(80,45,90,76,56),c("0+"),5.3, TRUE)
> print(student)

(1]

1] 107
2]

1] "Sunil’
[6]

1] TRUE




Str() shows the structure of data
> str(student)

List of 6

:num 107

:chr "Sunil’

num [1:5] 80 4590 76 56

. chr "O+"

‘num 5.3

v U U U O U

- logi TRUE



Converting a list into atomic vectors

> unlist(student)

[1]"101" "Sunil""80" "45" "90" '76" '56" "O+" "5.3'
"TRUE"



Factors

One important use of attributes is to define factors.

A factor is a vector that can contain only predefined values,
and is used to store categorical data.

Factors are built on top of integer vectors using two attributes:

the class, “factor’, which makes them behave differently from regular
Integer vectors



Examples

> gender=factor(c("male","female’,"'male",'female","male","male"))
> print(gender)

[1] male female male female male male

Levels: female male

> gender[7]="female"

> gender[8]="F"

Warning message:

In “[<-.factor’ (*tmp*’, 8, value = "F") :

invalid factor level, NA generated



Matrices and arrays

A special case of the array is the matrix,
which has two dimensions.

Matrices are used commonly as part of the mathematical machinery of
statistics.

Matrices and arrays are created with matrix() and array(),

or by using the assignment form of dim():



Creating matrix typel
> mat_a=matrix(c(2,4,5,2,6,1),ncol=3,nrow=2)
>mat_a
L1121 [3]
1) 2 5 6
2] 4 2




Creating matrix type?2
> mat_b=matrix(2:7,ncol=3,nrow=2)
> mat_b
L1]L2] L3
1) 2 4 6
2] 3 5 7




Creating matrix type 3 using rep()
> mat_c=matrix(c(rep(4,2),rep(6,4)),ncol=3,nrow=2)
>mat_C
L1 L2] 3]
1] 4 6 6
2] 4 6 6



Creating matrix type 4 using seq()

> mat_d=matrix(seq(from=1,t0=10,length.out=6),ncol=3,nrow=2)
> mat_d

L1 12] L3]

1] 1.0 46 82

2] 2.8 6.410.0




Reshaping the matrix

> dim(mat_d)=c(3,2)

> mat_d

L1]112]

1] 1.0 6.4

2] 2.8 8.2

3] 4.610.0

> str(mat_d)

num [1:3,1:2] 12.84.6 6.48.2 10




