INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES




Stochastic Process

‘E What is a continuous process? Three small-scale principles guide us.

Firstly, the value can change at any time and from moment to moment.

Secondly, the actual values taken can be expressed in arbitrarily fine fractions - any real
number can be taken as a value.

And lastly the process changes continuously - the value cannot make instantaneous jumps

A stochastic process is a sequence of values of some quantity where the future values
cannot be predicted with certainty.

Ahead of here we are concerned with continuous-time stochastic processes that have
applications in financial economics.



Introduction to Brownian motion

Q Near 1900, Bachelier adapted an approach that was fairly conventional at the time; he would
" model an asset price as a random walk. At the start of his thesis he argues that:

» At a given instant the market believes neither in a rise nor in a fall of the true price.
Which means that:
 The mathematical expectation of the speculator is zero.

His innovation was to consider the random walk to be continuous, rather than a discrete-time
random walk. This is analogous to moving from the binomial to the normal distribution.



Let’s Look In

Q

Bachelier who analysed the motion of the Paris stock exchange, people have gone further and
compared the prices to one particular continuous process - the process followed by a randomly
moving gas particle, or Brownian motion.
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Locally the likeness can be striking - both display the same jaggedness, and the same similarity
under scale changes - the jaggedness never smooths out as the magnification increases.

Thus, Brownian Motion is an effective component to build the model ahead.



Zooming in on Brownian Motion

Q We see that the graphs don’t become smooth irrespective of how much ever we zoom in.
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Wiener process (standard Brownian motion)

‘E A stochastic process W, t = 0 is a Wiener process if:

(i) Wo =

(i) W, has continuous sample paths.
(iii) The process follows a normal distribution, W, ~ N(0, t).
(

v) Forany 0 < s <t theincrementW, - W, is normally distributed, W, - W, ~ N(O,t -s). i.e Mean
= 0 and Variance = Time lag ( t-s in this case)

v) W, has independentincrements, that is for any sequence of times 0<t; <t,<...<t, we have
thatthe increments W, -W, _, ... W, - W, areindependent random variables.

vi) The increments are stationary — stable/not changing. Mean remains zero and variance
depends on the time lag in consideration.



Certain Dissimilarities

Q « However successful the Brownian motion model may be for describing the
movement of market indices in the short run, it is useless in the long run, if
only for the reason that a standard Brownian motion is certain to become
negative eventually. The stock prices cannot be negative.

« Brownian motion wanders. It has mean zero, whereas the stock of a
company normally grows at some rate. Thus BM tends to 0 whereas the
asset prices represent an increasing graph.

« The volatility of stock prices is quite high (in absolute terms), where as
Brownian motion represents low volatility (in absolute terms).

Thus we parameterize the Brownian motion, to insert drift and high volatility
into the picture.



A
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Parameterization Of the Brownian Motion

Q « Weinserta drift/trend-p — on the basis on expectation of the asset prices.

« Wealso inserta high volatility by o . The volatility can be controlled, since it is introduced
as variance, which is dependent onthetimelag.

« We have both the drift and volatility dependent on the time lag.
« Thus we get the General Brownian Motion (represented by Z) as:

Z,-Z, ~N(u.(t—s),0%x(t-s))



Stock Price Modelling

Q In order to model asset prices we need to define some starting point, suchasZ, =____
(since the Brownian motion has starting point as zero)

Thus we finally get the distribution as:

Z,-Z,~Zo+ N(u. (t —s),0%Xx(t-s))



Q

SBM to GBM and GBM to SBM

« Moving from the Standard BM to the General BM.

N(O t)xo+ut+Z, — Zy+ N (Ut o)
« Moving from the General BM to the Standard BM.

We move from GBM to SBM in the same way as we covert normal variable to a standard
normal variable.

We have Z, = Zy + ut + oW,

_ZO_Ut

Therefore, W, = 5




Geometric Brownian motion

‘H We also need to adjust the Brownian motion for the negativity factor, as stock prices
don’t go negative!

We consider,
S, = e’
Where Z, is the Brownian motion process Z; = Z, + W, + ut.

Thus S; which is called Geometric Brownian motion, is lognormally distributed with
parameters Z, + ut and a*t.

So the values of logS, are normally distributed with mean Z, + ut and variance o?t.



O

Properties of Geometric Brownian

« The mostimportant property of S; is S, =0, for all t.

From the properties of the lognormal distribution we also have:
E[S.] = exp((Zy + ut ) +1/2 o?t) and V[S,] = E?[S,] (exp(a?t)-1)
« Theincrements of S, are of the form S, - S = et - e?s
Z
* Thelog-return Iogi—z from time s to time tis given by Iogg—z = Iog:—Z: =Z:-Z,.

« [t follows by the independent increments property of Brownian motion that the log-returns,
and hence the returns themselves, are independent over disjoint time periods.
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Additional properties of Brownian motion

« Standard Brownian motion has a number of other properties inherited from the simple
symmetric random walk. A simple symmetric random walk is a discrete-time stochastic
process.

Q

Xn = 211 Z; where Z; = +1 or -1 with equal probability.

« Many of the properties of standard Brownian motion can be demonstrated using the
following decomposition. Fors<t:

Wy = Wy + (W, - W)

a decomposition in which the first term is known at time s and the second is independent of
everything up to and including time s



Covariance of a Wiener Process

Q An important property is that of the covariance betweenits values s >0 andt>s
Cov (Ws, Wy) = E[(W; - E[WS]) (W, - E[W,])]
= EW(Ws + (W, - W) |
This follows from the fact that E[Wt | = E[Ws] = 0, and then by applying the decomposition.
Cov (W, Wy) = E[W?] + E[WIE[(W, - W )]
= Var(W, ) + 00
=S
* Ingeneral, Cov (W, W,) = min{s,t}
« The importance of this result is that, in fact, if a stochastic process has the property that:

Cov (W,, W) = min{s, t}, then the process X, is a Wiener process



Scaled Wiener process

‘H Given a positive constant ¢ and a Wiener process W; define the
stochastic process X; by:

Xt = \/EWt/c

The ‘clock’ of the process X; has been scaled by a factorc. For
example, the process has been slowed down and magnified if ¢ > 1
(and speeded up and shrunk if c < 1).

% Prove that X, is Weiner process



Scaled Wiener process
O

Cov(X,,,.X,) = Cov (JEWH_U,JEWL)

= C X Cov(WM, WL)

c

- fi+u 1
meln{ C ’C}

assuming u>0.

Since Cov(X;,.,.X;)=min{t+u,t}, X, is a Wiener process.



Time-inverted Wiener process

Q Given a Wiener process W; define the stochastic process X; by:
X =tWy,,
The time-inverted Wiener process is itself a Wiener process.

*»» Prove the above statement.



Time-inverted Wiener process

Q

Then we have:

Cov(X;,y. X;) = Cov(t+uyw _1_,tW1)

I+u r

— (t+u)tx Cov w_L,wi)

+u [ 4

Since 1/(t+u) <1/t and by the covariance of Wiener processes:

i 1
Cov(X;.,,.X;)=(t+u)t xmin{ ——, —
( I+U° t) (t+u)tx {t+u t}
=(t-+-u)tL
t+u

=t

Therefore X; is also a Wiener process.



Martingales

‘H We have the following definitions of continuous-time martingales.

Given a filtered probability space (Q, F, F;, P) a stochastic process X; is called a martingale
with respect to the filtration, Fy, if:

- X,isadaptedto F,
« E[IX,]< oo forallt
 E[X,|Fs]=Xsforalls<t.

The first condition is just a technicality to ensure that the process value can be known with
certainty at time t, and the second is to guarantee that Xt is integrable.

In most questions we are only concerned with the last condition and we'll assume the first two
hold



Supermartingale & Submartingale

Q « Givens<t,asupermartingale is such that: E [X;| Fg]< X

« Givens <t asubmartingaleis such that E [X,| Fg]= X

A process which is both a supermartingale and a submartingale must therefore be a
martingale.



Wiener processes are martingales

Q We try to prove the third condition required for martingales.
Consider,
E[We 1BV ]=E W+ (W, - W)l K]
=E[W; | YV 1+ E[(W, - W)l V]
Since increments are independent and W, - W, ~ N(0, t-s):
E[W,IFY]=W,

The Wiener process is a martingale with respect to its natural filtration, noting that
E[[W,|] < 0o since W, < oo almost surely.



Try 1t yourself!
Q Consider the stochastic process defined by W, - t.

Prove whether it is a martingale or not with respect
to its natural filtration.



Solution

E[W2-t|F | = E| (Ws + W, - W)’ |FSW]-t

Ik 2
- E[W2 | R ]+ 2E[ W W, - o) | Y |+ B[ (W - ws)* 1R | ¢
==Ws2 - S

s0 it is a martingale with respect to its natural filtration.



Homework!!
(7,

Consider the stochastic process defined by exp(AW; - % A%1).

Prove that this process is a martingale.

HINT: [Consider Z as a normally distributed variable and make use of the MGF of a normal]



Stochastic Interest Rates

Q Initially the calculation has assumed that interest rates are constant throughout the term.
However in practice, Interest rates are never constant.

Thus, we define i, = interest applicable forthe period fromtimet-1totimet.

« i, will be a stochasticrandom variable (discrete or continuous) and different for each year.
« Since i, is a stochastic R.V. it will have some expectationand variance.

« The AV(i,) and PV(i,) are also random variables.

- We will assume i; follows a normal distribution with some parameters



Weiner Process iIs not differentiable

Q Earlier we saw that how much ever you zoom in to the BM process it does not become a
well-behaved function. The jaggedness remains intact.
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As a result the Brownian motion is differentiable no where.

How do we solve this problem then?



Solving the Problem

Q To solve the problem of differentiability we consider the increments of the BM.

We know that increments of a BM are stationary, independent and normally distributed.
We have:

X, - X, ~N(O;t -5)

If we consider an infinitely small increment, even then we have

Xevar - X¢ ~ N(O, dt) — the distribution of the increments remain normal irrespective of how
much ever you zoom in.

Thus we get the solution for differentiation as X, 4; - X; gives dX;.



Q

For the General BM

Consider a small increment B, 4¢ - Be-

The distribution is as follows: By g4; - By ~ N(udt , o2dt)
Therefore, dB, ~ N( udt + o2dt)

dB, = udt + N(O, a2dt)

dB, = udt + o N(0O, dt)

dB, = udt + o dX, (we just saw thatdX,~ N(0O, dt) )
This is the Stochastic Differential Equation. (SDE)



Q

Integration

Under integration we add up the (infinitesimal) increments (independent).

An integral in which we are integrating with respect to Brownian motion is called an Itointegral.
We have: fot dW; = W, - W, = W, (thus W, is the process)

It is worth noting that the increments of Brownian motion are just normal random variables,
and furthermore, the increments over disjoint time periods are independent.

In ‘adding’ up the increments dW; we are effectively summingindependent normal random
variables. Moreover, the increment dW, should have a N(0,dt ) distribution. Again this is
consistent with the value of the integral (W;), which has a N( 0,t ) distribution.



SDE to the Process

‘E 1) Consider where u and ¢ are both constants, meaning that B has constant volatility and drift,
the SDE for B is dB; = udt + o dX,

Integrating on both sides we have:
T T T
J, dB¢ = [, udt+ [ o dX,

Br-By= uT +0 [ dX,

Br-Bo = uT + 0 [Xr - X]

We have X, = 0.

By =By + uT + 0 X1 -2 Integralform

Br ~ N (Bg + uT, 62T) - Distributional form (since Xy ~ N(0,T))



SDE to the Process

‘H 2) Consider NOW a st.c.)chastic process where Solving fOTa(t) dx, -
the drift and volatility are both dependent
on time. The SDE is as: We have o (t)dX, ~ N(O, 6%dt)
dY, = u(t)dt + o(t)dX, Thus under integration we are adding the

. normal variables.
Suppose that u(t) = t* (a deterministic fn)

T T ,
Integrating both sides we get; fo a(t) dX, ~N(0, fo o” dt)

[ray, = [T u@ dt+ [ o) dx, o BT o(t) dX,] = [} o(t) EldX,] =0

+ VIfy o(t) dX,] = [y V [o(6) dX,] -
[ a2(t) V [dx,] _
[} a2(¢) dt

t3 T
YT_YO = ? + fo O'(t) dXt

{First term - Taking the example of u(t) = t*
and integrating it. Second term is an Ito

integral}. (since independent)



SDE to the Process

‘H 3) Consider now that the drift and volatility both depend on time and also the current
value of the process. Therefore now both are random stochastic variables. The

SDE is given as:
dZt —H (t;Zt) dt + O'(t,Zt) dXt

Integrating on both sides

[[dz, = [fu@tzydt + [ a2, dX,

! }
Zr-Z, = Stochasticterm Itointegral of a stochastic function

(timeintegral)  (outside the reach of our syllabus)



Process to SDE

Q Going fromthe process to the Stochastic differential equation we make use of [to’'s Lemma.

First Consider the Taylor’'s theorem

We first write down Taylor's theorem to for a small change h, where h — 0.

fx+h) = f(x) + hFO) + 5 P00 + 2 £(x) +...

2!
focrh) - (6) = hF(X) + 2 F(X) + ..
Now second term onwards on the right side turn to be 0 as h - 0. Thus we have,
f(x+h) - f(x) = h.f'(x)

What does this become if we replace the function x by the non-differentiable Wiener process X,?
Lets see!



Process to SDE

Q The analysis starts in much the same way. We can write Taylor's theorem to second-order as:

f( X, +dX, ) =f(X;) +dX, . f'(X,) +

dxp? ..
CEO™ () + ...
(dx,)?

2!

f( Xt + dXt ) B f(Xt) = dXt . f'(Xt) +

(X)) +

With Wiener processes, it turns out that the second-order term (dX,)? cannot be ignored. In fact, it
must be changed to dft,

i.e. (dX,)? = dt. Thisis not rigorous, but is a useful rule of thumb.
What we end up with is therefore:
df(Xt) = dXt . f'(Xt) + 1/2 f"(Xt) dt

Thisis Ito's Lemma for functions of Wiener processes, ie it tells us how to differentiate functions of
standard Brownian motion. Note, however, that this statement must be interpreted in terms of
integrals, since standard Brownian motion is not differentiable



Question

Q Find the stochastic differential equation for W, 2.

Solution:

Applying the above formula we have:

a(w? ) = 2W,dW, +%2dt = 2W,dW, +dt



Process to SDE - Type 1

First we consider that there is only a single By Ito's Lemma:
factor involved which is the Weiner process X;.

Q

df(B,%) = dB, . f(B,) + O

2
- o | 20" f(p,)
A process B; satisfies the stochastic differential 21

equation Now f'(B;) = 3B, and f"(B,) = 6B;. Therefore we

dB, = udt + o dX, where X, is a standard have
Brownian motion. df(B,3) = dB, . 3B, + 3 (dB,)? B,

Deduce the stochastic differential equation for

2 Now substituting dB; = udt + o dX;, we get
the process B;”.

df(B;>.) = (udt + o dX,) 3B,* + 3 (udt + o dX;)?
B

df(BtB) = 331:2 ‘let + 33t2 o dXt + O'zdt 3Bt

df(B,>.) = (3B,* u + 02 3B,) dt + 3B, ¢ dX,



Question

Q A stochastic process X, satisfies the stochastic differential equation dX; = p.dt + o.dB;,
where B, is a standard Brownian motion.

Find the stochastic differential equations for each of the following processes:
[) Gg=eXt
11) Vt = (1 +Xt)A_1



Solution

i)  Here the function we are applying Ito’s Lemma to is f{x)=¢e*, with f(x)=e* and f"(x)=¢e*.
So we get:
dG, =o'tex‘d8t +[,utexf +%6‘fexf |dt

=0,G,dB, +[u +%o~f 1G, dt

ii) Here the function we are applying Ito’s Lemma to is fx)=(1+ x)~1 with flx)=—(1+ x)'2 and

F(x)=2(1+x)">. So we get:

dV, ==, (1+ X, ) 2 dB, +[— 14 (1+ X, ) > + 67 (1+ X, ) ldt

=0,V 2dB, +[-14;? + 07V, ldt



Process to SDE - Type 2

|= Now we consider a multifactor function. Suppose we have Weiner process X; and timet (i.e.
f(X,,t)). Here we write the Ito’s Lemma in two variables following the same logic as earlier:

f(X, +dX,, t+dt)="f(X.1)+dX,. % + dt d fgf[t:t) N (d;('t)z | dz;ith:t) N (dzt')2 | dz];(;t,t) +dt
t . t !
a2f(x,t)
aX; . dt. dx,

Combining Ito’s formula with the Taylor expansion of f (x,t) we can deduce the following
rules” (dX,)? = dt and dX,dt = (dt)? =0

d f(x,1)
dt

This is actually just an application of Taylor's theorem in two variables.

d f(x,t) N dxp? azf(x,1)

d f(X,t)=dt. dx, 2 dx.2

+dX, .



Martingale

‘H We know that for the process to be a martingale it should fulfill the condition that
E[X,| Fs ] = X, Thus we should have that the drift in the process = 0.

Therefore the driftless Ito process is a martingale.

To check for martingale, find the Ito’'s Lemma and check for dt = 0



The mean-reverting process

The mean-reverting process, defined by the SDE
dYt = )/(/,l - Yt)dt + O-th

In the mean-reverting process, the process is pulled back to some equilibrium level u, at a rate
determined by y > 0 . Note that this process can go negative.

We can investigate:

dY; + yY,dt = yudt + adW;

Multiply by e¥* throughout

dY,e?t + e?tyY,dt = e?t yudt + e¥t adWW,

d(e?tY;) = e¥t yudt + e?t odW,



The mean-reverting process
Q Integrating both sides betweenOto T

fOT d(e’tY,) = fOT eVt yudt + fOT e¥t gdW,

eVTYr - Yy = ule?’ - 1] + fOT et odW,

Yr=Yoe YT +u[l— e "T|+e Vg fOT e?t dw,

Now consider e‘VTafoT e¥t dW, , here fOT e¥t dW, is an Ito integral.

dw, ~ N(0, dt) > e?* dw, ~ N(0, e2"tdt) -> [ e?* dw, ~ N(O, [, e* dt)

1—-e~2YT

e "o fOT et dw, ~ N(0, o%[ )

1—e~ 21T

Therefore finally, ¥z ~N(Yoe " +p[1— e7""], 0?[——])




Square root mean-reverting process

Q The process defined by the SDE:

dY, = y(u — Yp)dt + 0,/Y, dW,
with u, o > 0 is known as the CIR, Feller or ‘'square root mean-reverting’ process.

If parameters satisfy a2 < 2 yu the process is positive. If the process hits zero, its volatility
disappears and its drift is positive, the process deterministically moves away from zero and
spends 'no time’ at zero (ie the time spent at zero has measure zero). This is a very useful
property in modelling asset prices.

There is no closed form solution for Y;.



Share Price Process

Q Consider General BM with drift n, and volatility o. It is given by the process B; = By + nt + o dX;
Geometric BMis given as S, = eBt = gBo Tt o dx,
What is SDE for this process? We use Ito’'s Lemma:

d f(x,t) d f(x,,t) N dxp? azf(x,t)

d f(X,t)=dt. gt +dX, . dx, 2 dx2
Here
a f(x,t G
fj? ) (ePotnttadryy = 5, g
) oy o 5,

azf(x,,t)
dg(t; = (ePo +nt+o dxt)_ g% = S, g2



Share Price Process
df(X,t)=ds,=(n+ —) S, dt+o S, dX,

2
Now we let p = (i +”7) , we have

Thisisthe SDE forthe share price process.



Share Price Process

Q Now consider the function InS;.

What is the SDE for this process if the process S; evolvesas dS; =y S; dt + ¢ S; dX,.

Solution: Let f(S;)=In(S;) and apply Taylor’s theorem to give:

~2
of o 18
O‘St 2 O.St

df (St )= (dSt)

1
gl
5 & > (ds; ) +

257

5202

25}

dt

%(,udtﬂfdwt)

[/1—102 Jdt+0dwt
.



Share Price Process

Q Now we move from the SDE to the process for ~ Now we look at the distribution

the share price. ¢
| | 2L ologN((p—"%a?)T,a%T)
Integrating the SDE on both sides between So

time 0 and T gives: InSy~ N (InSg+ (1 — % 62) T, 6%T)

fOTd InS, = (U — % o?) fOT dt +o fOT dX,
NSy -InSy =(u—"%02) T+0o Xy

NSy =INSg+(U—"%0%)T+0 Xy

Sy =S, el =%0?) T+ox;

This is the solution to the geometric Brownian
motion SDE dS; =y S, dt+ ¢ S; dX,;., andis a
standard share price model.



Quick Recap

» A stochastic process W, t = 0 is a Wiener process
if:

(i) Wy =
(i) W; has continuous sample paths.
(

i) The process follows a normal distribution, W, ~
N(O,1).

(iv) Forany 0 < s < t the increment W, - W is normally
distributed, W, - W, ~ N(O,t -s). i.e Mean =0 and
Variance = Time lag (t-s in this case)

v) W; has independentincrements, that is for any
sequence of times 0<t; <t,<..<t, we have that
the increments W, -W; ., ... W, - W, are
independent random variables.

vi) The increments are stationary — stable/not
changing. Mean remains zero and variance depends
on the time lag in consideration.

> Z,-Zg ~N(u. (t —s), o*x(t-s))
> N(Ot)xo+ut+Zy, — Zo+N (ut, o?t)
Zt=Z0+p’[+OWt

Therefore, W, = 2~ Z(;’ ~ Wt

» Given a filtered probability space (Q, F, F;, P) a
stochastic process X, is called a martingale with
respect to the filtration, F;, if:

« X, isadaptedto F;
«  E[|X;|]<ooforallt
« E[X;|Fg]=Xsforalls<t.



Quick Recap

» Givens<t,asupermartingaleis such that: E
[X,| Fs]<Xg

> Given s <t asubmartingale is such that: E [X,
|Fg]>Xg

» The General Brownian Motion
dB;= udt + o dX;

» We know that for the process to be a
martingale it should fulfill the condition that
E[X.| Fs ] =X, Thus we should have that the
drift in the process = 0.

Therefore the driftless Ito process is a
martingale.

To check for martingale, find the Ito’'s Lemma
and check for dt =0

Yr ~N(Yoe T+ pu[1 - e 7], 6?]

» Mean Reverting Process

» Share Price Process

NSy~ N (InSg+ (4 — %2 62) T, 62T)

1_e—2}'T




