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Zero-coupon bonds

The multitude of traded instruments leads to the first challenge in interest rate modelling:
the multitude of definitions of interest rates.

« The basic debt instrumentis the discount bond (or, equivalently, the zero-coupon bond). This is
an asset that will pay one unit of currency at time T and is traded at time t < T. If the interest rate,
R, is constant betweent and T then we can say that the price of the discount bond purchased at t
and maturingat T is given by P(t,T) where:

1
P(t,T)= =
&) (1+R(t,T))T ‘

« Thespotrate R(t,T) is the effectiverate of interest applicable over the period from time t to time
T that is implied by the market prices at time t.




1 Zero-coupon bonds

‘H Observe that P(T,T) =1 andforallt<T ,P(t,T)<P(T,T) =1. Wedefinet =T — tin what
follows.
« The discrete bond yield calculated from discount bond prices is:
_ 1
R(t,t+7) = TSI
« |fa’spot rateis paid m times a year, then:

P(;,n) - (1 t %)nm

The limit as m — o is a continuously compounded rate, r(t,T) (‘force of interest’), such
that:
1

-r(t,T)t — — _
€ P(t,T) (1+R(ET))"
The continuously compounded bond yields is calculated as
T(t T) _ _lnP(t,T)

T




?2 Yield Curves
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Fixing t=0 and plotting yield, R(0,t) or r(0,t) , against maturity’, T, gives the yield curve
which gives information on the term structure, how interest rates for different
maturities are related. Typically, the yield curve increases with maturity, reflecting
uncertainty about far-future rates. However, if current rates are unusually high, the
yield curve can be downward sloping, and is inverted.

There are various theories explaining the shape of the yield curve. The expectations
theory argues that the long-term rate is determined purely by current and future
expected short-term rates, so that the expected final value of investing in a sequence of
short-term bonds equals the final value of wealth from investing in long-term bonds.
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Yield Curves

0 There are various theories explaining the shape of the yield curve. The expectations
theory argues that the long-term rate is determined purely by current and future
expected short-term rates, so that the expected final value of investing in a sequence of
short-term bonds equals the final value of wealth from investing in long-term bonds.

0 The liquidity preference theory argues that lenders want to lend short term while
borrowers wish to borrow long term, and so forward rates are higher than expected
future zero rates (and yield curves are upward sloping).



?2 Yield Curves
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3 Short Rates and Forward Rates

‘H » Short Rates
>The short or instantaneous rate, r(t), is the interest rate charged today for a very short
period (i.e. overnight). This is defined (equivalently) as:
r(t) =r(t,t+6)~R(t, t+ )
where § is a small positive quantity. So the short rater (t) is the force of interest that
applies in the market at time t for an infinitesimally small period of time §. Using the
relationship developed in the opening section we have

(t)—al P(t,t+6
nkE) =5g PGt )

The short rate is often the basis of some interest rate models; however, it will not
generate, on its own, discount bond prices.



3 Short Rates and Forward
Rates

‘H » Forward Rates

The forwardrate, F (0,1, T) if discretely compounded and f (0,t,T) if continuously
compounded, relates to a loan starting at time t, for the fixed forward rate, the forward
rate, repaid at maturity, T. It involves three times, the time at which the forward rate

agreement is entered into (typically 0), the start time of the forward rate, t and the maturity
of the forward rate agreement, T.

The law of one-price/the no-arbitrage principle, implies:

P(0,t) % 3
P(O,T)) -

F(0,t, T) = (



3 Short Rates and Forward Rates

‘H » Forward Rates

The forwardrate, F (0,1, T) if discretely compounded and f (0,t,T) if continuously
compounded, relates to a loan starting at time t, for the fixed forward rate, the forward
rate, repaid at maturity, T. It involves three times, the time at which the forward rate
agreement is entered into (typically 0), the start time of the forward rate, t and the maturity

of the forward rate agreement, T.

The law of one-price/the no-arbitrage principle, implies:

1
P(0, T—t
FOO¢,T) = (P((O ;))) 1
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Questio
n

What do you think term structure models are used for?

Answers —

The main uses of term structure (interest rate) models are:

[
[
[

[

by bond traders looking to identify and exploit price inconsistencies

for calculating the price of interest rate derivatives

by investors with a portfolio involving bonds or loans who want to set up a hedged
position

for asset-liability modelling.
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Equlibrium Models

0 Equilibrium models start with a theory about the economy, such that interest rates

revert to some long-run average, are positive or their volatility is constant or geometric.
Based on the model for (typically) the short rate, the implications for the pricing of
assets is worked out. Examples of equilibrium models are Rendleman and Bartter,
Vasicek and Cox Ingersoll-Ross.

0 Being based on ‘economic fundamentals’, equilibrium models rarely reproduce

observed term structures. This is unsatisfactory.

0 No-arbitrage models use the term structure as an input and are formulated to adhere to

the no-arbitrage principle. An example of a no-arbitrage model is the Hull-White (one-
and two factor).
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1.1 Risk Neutral Approach to Pricing

‘H » The risk- neutral approach to pricing
We will assume that the short rate is driven by an Ito diffusion:
th — ‘u(t, Tt)dt + O-(t, Tt)th

where u(t, ry) is the drift parameter
o(t, ;) is the voltality parameter
Wt is a Wiener process under the martingale measure.
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4.1 The Vasicek Model

‘H > Vasicek assumes that:
dry = a(u — rp)dt + adW;
for constantsa > 0, u and, a.

Here u represents the ‘mean’ level of the short rate. If the short rate grows (driven by
the stochastic term) the drift becomes negative, pulling the rate back to u . The speed of
the reversion’is determined by a. If a is high, the reversion will be very quick.

Instantaneous Forward Rates
2 2

f&.T) =r()e " + (u — 2%) (1—e %)+ 2%(1 — eaT)gat
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4.1 The Vasicek Model

‘E 12% -

10%

4% S
- M
yi

0%

-2% -

Example simulation of short rate from the Vasicek model
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4.2 The Cox Ingersoll Ross Model

» In Vasicek’'s model (and Hull-White, below) interest rates are not strictly positive. This
assumption is not ideal for a short-rate model. CIR use the Feller, or square root mean
reverting process which is positive (it can instantaneously touch 0 but immediately

rebounds):
dry = a(u — r,)dt + oVr.dW,

The associated PDE is

dg(trr) | 99(try) 1 0%@tr) _
e T o a(u—rg)+2* gz PO T 1 g(t, 1) =0
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4.2 The Cox Ingersoll Ross Model
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4.3 The Hull White model

‘H » The Hull-White model is an extension of Vasicek where the mean-reversion level, u, is a
deterministic function of time:
th —_ a(/,l(t) - T't)dt + O-th

fora>0ando

This yield a PDE similar to vasicek,

dg(tr) , dg(tr) B 1 0%g(tr) 5 _
o + o7, a(u(t) rt)+2* or? g —1.g(t,nr)=0
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Question

If At) is a strictly positive supermartingale, then zero-coupon bond prices can be modelled using

EplAT)IF]

the formula B(t,T)= , where P is a suitably-chosen probability measure.

(i) (a)

(b)

(c)
(d)

(i) By writing A(t) in the form A(t)=e

Alt)

Express mathematically the fact that Aft) is a strictly positive supermartingale.

Verify that the function A‘t)__e-o.osuu.ozwm' where W(t) denotes standard

Brownian motion, satisfies the properties in (i)(a).
State why the supermartingale property is required.

Write down the name given to this type of process. (7]

x(r)' or otherwise, show that A(t) satisfies a stochastic

differential equation of the form:

dA(t) = Alt)[u,(tMdt + o, (hdW(t)]

State the forms of the functions #4(t) and a4(t). (4]
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®

Question

(i)

(iv)

(a) Write down or derive a formula for P(t,T) based on the process A(t) specified in
(i)(b).

(b) Write down expressions for the instantaneous forward rate f(t,T) and the spot
rate r(t,T) based on this model.

(c) State one problem that this model of interest rates has. (4]

Calculate the prices at time 5 according to the model in (ii) of the following risk-free
bonds:

(a) a 10-year zero-coupon bond

(b) a 10-year bond that pays a coupon of 5% at the end of each year. (4]
ITntal 191
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Solution

(i){a) Express these properties mathematically
‘Strictly positive’ simply means that:

A(t) >0 for all times ¢ [1]
The ‘supermartingale’ property means that, whenever t < T :

EplAT)|F)< Alt) (1]
(i)(b) Verify that this function has these properties
The presence of the exponential function ensures that this function is strictly positive. []

Since At) is strictly positive, the supermartingale property is equivalent to:

EplAMTIR] _, .
Alt)
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Solution

With the definition given for A(t), the left-hand side is:

s - EplAT) ]
Alt)

- £005t-002W(t)g [ p~005T+0.02W(T) | "}]
. e—o.osu—nfp[ £0-02W(T-w(t)) l F,] (1]

Because of the independent increments property of Brownian motion, we can drop the f,. We

can then use the fact that W(T)-W(t)~N(O,T —t) under P to evaluate the expectation on the
right-hand side, which corresponds to an MGF based on a normal distribution. Using the formula
given on page 11 of the Tobles, we get:

LHS = e—O.OS(T—t)e%(O.OZ)Z(T-I) . e—0.0498|T—l) [%]

When t < T (which we have assumed throughout), this is indeed less than 1. So the
supermartingale property is satisfied. [%]

23



Solution

(i)ic) State why the supermartingale property is required

The supermartingale property is equivalent to:

EplAMIE] _
Alr)

The left-hand side matches the formula for the bond price B(t,T). So this property ensures that
the price of a zero-coupon bond is always less than 1. This is equivalent to prohibiting negative
interest rates. [1]

(i)id) Name of the process

The process Alt) is a state price deflator. [1]
[Total 7]

(ii) Stochastic differential equation for A(t)

We can write:

X(r)

Alt)=e
where X(t)=-0.05t+0.02W/(t), so that dX(t)=—0.05dt +0.02adw/(t). [1]

So, using a Taylor Series expansion, we can write:

aa(t) = d[ ¥ ] = eXWax(e) + Le* O ax(o)?

= Al)|ax(e) + Hax ()’ | (1]
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Solution

Substituting the SDE for X(t) gives:
dA(t) = A(t)-{ ~0.05dt +0.02dw/(t) + -;—[—0.0Sdt + 0.02dW(t)]2 :
Simplifying using the 2 x2 multiplication grid, we get:
dAlt) = Alt)| -0.05dt +0.02dW/(t) + 1{0.02)% ot |
= A(t){~0.04984dt + 0.02dW/(t)}

So, in this case, the drift and volatility coefficients are:

114(t)=-0.0498 and o,(t)=0.02

(iii)la) Formula for P(t,T)

We have already evaluated the formula for P(t,T) in part (i)(b), which gave:

P(t,T) = EplA(T)|] . e—0.0498|r_:)

Alt)

(1]

(1]
[Total 4]

(1]
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Solution

(ili)(b) Expressions for f(t,T) and r(t,T)

The instantaneous forward rate is:
flt,T) = -f_'TnogP(t,r) = —f—'T[-o.oaga(r ~1)]=0.0498
(o C

jie a constant rate of 4.98%. [1]
The spot rate therefore also takes a constant value of 4.98%. [1]
(iii)(c) One problem with this model

A model with constant interest rates over all terms is not arbitrage-free. This would be a serious

problem if the model was used in practical applications. [1]
[Total 4]

(iv)(a) Price of a zero-coupon bond

According to this model, the price at time 5 (or indeed, at any time) of a 10-year zero-coupon
bond is:

ie 60.77 per 100 nominal. [2]
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Solution

(iv)(b) Price of a 5% annual coupon bond

The price of a 5% annual coupon bond per 100 nominal is:
P=5[v+ v2 et vi?)+ 200017
where v=e0%9 _095142.

Evaluating the sum as a geometric progression, we get:

10 )

P=5v

+60.77 = 5(7.682) +60.77 = 99.18 [2]

1-v
/

[Total 4]
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Quick Recap

The multitude of traded instruments leads to the first challenge in interest rate modelling: the multitude of definitions
of interest rates.

Fixingt=0and plottingyield, R(0,t) orr(0,t), against maturity’, T, gives the yield curve which gives information on the
term structure, how interestrates for different maturities arerelated. Typically, the yield curve increases with maturity,
reflecting uncertainty about far-future rates. However, if current ratesare unusually high, the yield curve canbe
downward sloping, andis inverted.

The short or instantaneous rate, r(t), is the interest rate charged today for a very short period (i.e. overnight). This is
defined (equivalently) as:

r(t) =r(t,t +6)~R(t, t+ 6)
The forward rate, F (0,t,T) if discretely compounded and f (0,t,T) if continuously compounded, relates to a loan starting
at time t, for the fixed forward rate, the forward rate, repaid at maturity, T. It involves three times, the time at which the
forward rate agreement is entered into (typically 0), the start time of the forward rate, t and the maturity of the forward
rate agreement, T.

Equilibrium models start with a theory about the economy, such that interest rates revert to some long-run average,
are positive or their volatility is constant or geometric. Based on the model for (typically) the short rate, the
implications for the pricing of assets is worked out. Examples of equilibrium models are Rendleman and Bartter,
Vasicek and Cox Ingersoll-Ross.

28



Quick Recap

Model Dynamics rp>0 forallt Distribution of r,
Vasicek dr, = alp—r,)dt + adW, No Normal

> Non-central chi-
CIR dr, ma{pu—r)dt +ofndW, | Yes i
Hull-White - -
Vasicek dry = g p(t) = r Yot + odW, No Normal
Hull-White =CIR | dr, = a(u(t)=-r,)dt +o,/r,dW, | Yos Non-central chi-

squared
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