

Subject: Financial Engineering 1

Chapter:

Category: Assignment 2 Solutions

i) Data: $S_0 = 65$, K = 55, $\sigma = 25\%$ p.a., T = 0.5 year, r = 2% Let C_t be the price of the European call.

The Black-Scholes formula returns

$$d_1 = 1.09$$

$$d_2 = 0.9132$$

$$N(d_1) = 0.8621$$

$$N(d_2) = 0.8194$$

Therefore
$$C_0 = 65 \times 0.8621 - 55e^{-0.02 \times 0.5} \times 0.8194$$
 [1]

$$= 11.42$$
 [1]

ii)
$$delta = \frac{\partial C}{\partial S}$$
 [1]

[Note to markers: please award $\frac{1}{2}$ mark for stating $N(d_1)$]

iii) In the Black-Scholes model
$$delta = N(d_1)$$
 [1]

Using the results from above
$$delta = 0.8621$$
 [1]

iv)
$$delta_{put} = delta_{call} - 1$$
 [1] Therefore, $delta_{put} = -0.1379$ [1]

& QUANTITATIVE STUDIES

- i) For a derivative whose price at time t is f(t, St) where St is the price of the underlying asset,
- Delta is the rate of change of its price with respect to a change in $S_t: \Delta = \frac{\partial f}{\partial S_t}$
- Vega is the rate of change of its price with respect to a change in the assumed level of volatility of S_t : $\nu = \frac{\partial f}{\partial \sigma}$

[2]

Put-call parity states that: $c + K*exp(-r\tau) = p + S$ where c and p are the prices of a European call and put option respectively with strike K and time to expiry τ and S is the current stock price.

Differentiating w.r.t. σ implies $\frac{\partial c}{\partial \sigma} = \frac{\partial p}{\partial \sigma'}$, i.e. the vegas are identical.

[1]

IARIAL

iii)

$$d_1 = \frac{\log \frac{S}{K} + (r + \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}$$

Therefore, $d_1 = 0.706241$

$$d_2 = d_1 - \sigma\sqrt{\tau}$$

Therefore, $d_2 = 0.456241$

$$c = S\Phi(d_1) - Ke^{-r\tau}\Phi(d_2)$$

Therefore, c = 9.652546

$$p = c + Ke^{-r\tau} - S$$

Therefore, p = 2.214017

[3]

iv)

A portfolio for which the overall delta (i.e. weighted sum of the deltas of the individual assets) is equal to zero is described as delta-hedged or delta-neutral. Such a portfolio is immune to small changes in the price of the underlying asset.

A portfolio for which the overall vega (i.e. weighted sum of the vegas of the individual assets) is equal to zero is described as vega-hedged or vega-neutral. Such a portfolio is immune to small changes in the assumed level of volatility. [2]

FINANCIAL ENGINEERING 1

v) Let the required portfolio consist of x call options, y put options and z forwards.

The delta and vega for a forward are 1 and 0 respectively and there are no current cashflows.

Thus, for a single unit of each of them, we have:

	Present value / cashflow	Delta	Vega
Call option	c = 9.6525	Δ_{c}	Vc
Put option	p = 2.2140	Δp	Vp
Forward	-	1	-

<u>Vega-neutrality</u>: The vega of a forward is zero. For the portfolio must be vega-neutral, we must have: $x^*V_c + y^*V_p = 0$.

From part b, we have $V_c = V_p$. Therefore, $(x+y)^*V_c = 0$. Therefore, x+y=0. Therefore, y=-x.

Delta-neutrality:

We know that Δ of a forward is one. For the portfolio to be delta-neutral, we need: $x^*\Delta_c + y^*\Delta_p + z = 0$.

Also, $\Delta_p = \Delta_c - 1$ and y = -x. Therefore, on simplifying, we get: x + z = 0 or z = -x.

Overall portfolio:

Thus, we have x = -y = -z and the total portfolio is to be worth \$1000. So we must have:

x*c + y*p + z*0 = 1000. Therefore, x*9.6525 - x*2.2140 = 1000.

Therefore, x = 134.4, y = z = -134.4

So our portfolio must consist of:

- · Long position of 134 call options
- Short position of 134 put options
- Short position of 134 forwards

[4]

[12 Marks]

FINANCIAL ENGINEERING 1

(i)
$$C_t = E(e^{-r(T-t)}C_T | F_t)$$
 [1]

where
$$F_t$$
 denotes the filtration at time $t > 0$, [½]

$$C_T$$
 is the payoff under the derivative [½]

at maturity time
$$T$$
, $[\frac{1}{2}]$

$$C_t$$
 is the derivative value at time t , $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$

and the expectation is taken under the risk-neutral martingale measure. [
$$\frac{1}{2}$$
] [Max 3]

Data:
$$S = 50$$
; $K = 49$; $r = 5\%$; $\sigma = 25\%$; $T = 0.5$

(ii)The Black-Scholes formula returns:

$$d1 = 0.3441$$
 [½]

$$d2 = 0.1673$$
 [½]

$$N(d1) = 0.6346$$
 [½]

$$N(d1) = 0.6346$$
 [½] $N(d2) = 0.5664$ [½]

So Call =
$$50 \times 0.6346 - 49e^{-0.05 \times 0.50} \times 0.5664 = 4.66$$
 [2]

- Same as European call (as the stock is non-dividend-paying), i.e. 4.66 (iii)
 - (iv) Using put-call parity (or otherwise):

$$p_t = c_t + Ke^{-r(T-t)} - S_t$$
 [1]

Hence
$$p_t = 2.45$$
. [1]

(v) If the stock is dividend-paying, the payment of the dividends would cause the value of the underlying asset to fall – which follows from the no arbitrage principle [1]

Alternatively: in valuing the option we must take account of the fact that dividends are payable on the underlying asset which do not feed through to the holder of the option. [1]

Therefore the price of the European call would decrease... [1/2]

... since by buying the option instead of the underlying share the investor forgoes the income [1/2] Similarly, the price of the European put would increase [1/2]

The American call would now be more expensive than the European call due to potential early exercise opportunity [1]

[Max 3]

FINANCIAL ENGINEERING 1

(i) Suppose that
$$Z_t$$
 is a standard Brownian motion under P . [1]

Furthermore, suppose that
$$\gamma_t$$
 is a previsible process. [½]

Then there exists a measure
$$Q$$
 equivalent to P $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$

and where
$$\tilde{Z}_t = Z_t + \int_0^t \gamma_s ds$$
 is a standard Brownian motion under Q . [1]

Conversely, if Z_t is a standard Brownian motion under P and if Q is equivalent to P then there exists a previsible process γ_t such that

$$\tilde{Z}_t = Z_t + \int_0^t \gamma_s ds$$
 is a Brownian motion under Q . [1]

(ii) Under the risk-neutral probability measure, the discounted value of asset prices are martingales. [1]

5.

INSTITUTE OF ACTUARIAL

(i) Delta = $\Delta = \Phi(d_1)$

using standard Black-Scholes notation. [1]

(ii)
$$\Delta = \Phi(d_1) = 0.6179$$
 means that $d_1 = 0.3$ [1]

So
$$0.3 = (\log(40/45.91) + (0.02 + 0.5\sigma^2) \times 5) / \sigma\sqrt{5}$$
 [1]

So
$$-0.0378 - 0.6708\sigma + 2.5\sigma^2 = 0$$
 [½]

Solving the quadratic gives
$$\sigma = 0.3161$$
 or $\sigma = -0.0478$ [1]

Rejecting the negative root gives $\sigma = 32\%$ (or may quote variance = 10%) [½]

FINANCIAL ENGINEERING 1
ASSIGNMENT 2 SOLUTIONS

(iii) Under the risk-neutral probability measure
$$Q$$
, the fair price of the option is $ce^{-rT}Q(S_I/S_0 < k_S) Q(R_I/R_0 < k_R)$ [2]

(iv) Under the Black-Scholes model , if the stocks are perfectly correlated then
$$S_1/S_0 = R_1/R_0$$
. [1]

So if
$$k_S < k_R$$
 then the option only depends on stock S and has value $ce^{-rT}Q(S_I/S_0 < k_S)$ [1]

Similarly if
$$k_S > k_R$$
 then the option only depends on stock R and has value $ce^{-r}Q(R_I/R_0 < k_R)$ [½]

If
$$k_S = k_R$$
 then the option can be defined in terms of the price of either stock as $ce^{-rT}Q(S_1/S_0 < k_S) = ce^{-rT}Q(R_1/R_0 < k_S)$ [½]

So overall the option can be defined in terms of the lower of k_S and k_R , and either of the stock increases, i.e. has value

$$ce^{-rT}Q(R_I/R_0 < \min(k_S,k_R)) = ce^{-rT}Q(S_I/S_0 < \min(k_S,k_R))$$

[1] [Max 3]

(v)
$$ce^{-rT}Q(S_T/S_0 < k_S) Q(R_T/R_0 < k_R)$$

=
$$50e^{-0.02} Q(S_T/S_0 < 0.8) Q(R_T/R_0 < 0.6)$$

$$= 50e^{-0.02} Q(S_1 < 0.8 \times 40) Q(R_1 < 0.6 \times 30)$$
[1]

$$= 50e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right) \left(1 - \Phi((\log(R_1/0.6R_1) + (r - 0.5\sigma_R^2))/\sigma_R)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

$$= 10e^{-0.02} \left(1 - \Phi((\log(S_1/0.8S_1) + (r - 0.5\sigma_S^2))/\sigma_S)\right)$$

=
$$50e^{-0.02} (1 - \Phi((\log(1/0.8) + 0.02 - 0.5 \times 0.32^2)/0.32) (1 - \Phi((\log(1/0.6) + 0.02 - 0.5 \times 0.15)/\sqrt{0.15})$$
 [½]

$$= 50e^{-0.02} (1 - (0.59982)) (1 - \Phi(1.1769))$$
 [½]

$$= 50e^{-0.02} (1 - 0.7257) (1 - 0.88039)$$
[1]

= \$1.61 (using
$$\sigma$$
 = 0.32, or \$1.59 using an exact σ = 0.3161) [1] [Total 15]

FINANCIAL ENGINEERING 1

- (i) Let f denote the price of a put option, then $d_1 = (\ln(S_0/K) + (r + \frac{1}{2}\sigma^2)T)/\sigma\sqrt{T}$ and then $\Delta = -\Phi(-d_1) = \Phi(d_1) 1$.
 - (b) In this case, we must have $100,000\Delta = -24,830$ and so $\Delta = -0.25$
- (ii) $\Delta = -.2483$ and so $d_1 = 0.68$. It follows (rearranging the expression for d_1) that $(.01575 + .03 + 0.5\sigma^2) = 0.68\sigma$. Solving the quadratic equation we obtain $\sigma = 0.68 \pm \sqrt{0.3709} = 0.07098 = 7.1\%$ (choosing the root less than 1).
- (iii) We need to calculate $K e^{-rT} \Phi(-d_2) = e^{-r} \Phi(-d_1 + \sigma \sqrt{T})$ = $630e^{-0.03} \Phi(-0.609) p = 630e^{-0.03} * 0.2712 = 165.806 p.$

Clearly the option price is 165.806 - 24830 * 640/100,000 = 6.894p. and the value of the cash holding is 100,000 * 165.806p = £165,806

7.

f and assume this is written on an

(i) Denote the individual derivative by f and assume this is written on an underlying security S

Delta =
$$\partial f/\partial S$$

Gamma = $\partial^2 f/\partial S^2$
Vega = $\partial f/\partial \sigma$

- (ii) Delta = 0.801
- (iii) The hedge is delta = 0.801 shares = and 17.91 0.801 * 60 = \$30.15 short in cash.
- (iv) Using the approximation $f(S, \sigma + \delta) \approx f(S, \sigma) + \delta df/d\sigma$, we obtain an option price $\approx 17.91 + 29.00 * 0.02 = 18.49 .

- (i) Δ is the first partial derivative of the option price with respect to the underlying asset price. [1]
- (ii) Using the formula for the Δ , we see that $\Phi(d_1) = 0.42074$ and hence $d_1 = -0.2$.

Thus
$$-0.2 \sigma = -0.0600 + \frac{1}{2}\sigma^2$$
 or $\frac{1}{2}\sigma^2 + 0.2\sigma - 0.06 = 0$.

Solving the quadratic gives $\sigma = 20\%$ or -60% and rejecting the negative value gives $\sigma = 20\%$.

9.

(i) The PDE is the Black-Scholes PDE:

$$\frac{1}{2}\sigma^2 x^2 g_{yy} + (r - q)x g_y - rg + g_t = 0$$

with boundary condition as above: g(T, x) = f(x).

(ii) The proposed solution implies that for this derivative the function g is given by $g(t, x) = (x^n / S_0^{n-1})e^{\mu(T-t)}$, where n is an integer great than 1.

This gives
$$xg_x = ng$$
, $x^2g_{xx} = n(n-1)g$ and $g_t = -\mu g$.

Thus, to solve the PDE we need
$$\mu = \frac{1}{2}\sigma^2 n(n-1) + (n-1)r - nq$$
.

A quick check shows that
$$g$$
 satisfies the boundary condition: $g(T, x) = x^n/S_0^{n-1}$.

(i) Consider the portfolio which is long one call plus cash of $Ke^{-r(T-t)}$ and short one put.

The portfolio has a payoff at the time of expiry of S_T .

Since this is the value of the stock at time T, the stock price should be the value at any time t < T: that is

$$C_t + Ke^{-r(T-t)} - P_t = S_t.$$

(ii) This relationship is known as put-call parity.

The Black-Scholes formula gives us that S_0 $\Phi(d_1)$ Ke^{-rT} $\Phi(d_2)$, with

$$S_0 = 110, K = 120, r = .02, T = 1$$

so that

$$d_1 = (\log(S_0/K) + r + \frac{1}{2}\sigma^2 T) / \sigma \sqrt{T} = (\log(11/12) + .02 + \frac{1}{2}\sigma^2) / \sigma,$$

$$d_2 = d_1 - \sigma.$$

Guessing and repeated interpolation gives $\sigma = 30\%$.

(iii)

FINANCIAL ENGINEERING 1

(iv) (a) The payoff from the portfolio, D, satisfies

$$S_1 - 121 \le D \le S_1 - 120$$
.

It follows that the initial price, V, of the portfolio should satisfy

$$S_0 - 121e^{-r} \le V \le S_0 - 120 e^{-r}$$
,

i.e.
$$-8.604 \le V \le -7.624$$
.

- (b) And this implies that $17.714 \le P_0 \le 18.694$.
- (v) The Black-Scholes price (using the formula in the tables) is \$18.35.

11.

- (i) The Δ of the call holding must be minus the Δ of the shareholding, which, by definition is -18673, so the Δ of a call is $\Delta_C = 0.18673$.
- (ii) Δ_C for a call is $\Phi(d_1)$, where $d_1 = (\ln(S_0/k) + r + \frac{1}{2}\sigma^2))/\sigma = (\ln(1.1798/1.5) + 0.02 + \frac{1}{2}\sigma^2))/\sigma = -0.22/\sigma + \frac{1}{2}\sigma$.

Now
$$\Phi(d_1) = 0.18673$$
 so $d_1 = -0.89$

which implies that

$$-0.22 + 0.89 \ \sigma + \frac{1}{2} \ \sigma^2 = 0 \ \text{so} \ \sigma = -0.89 \pm (0.89^2 + 0.44)^{\frac{1}{2}}$$
. Rejecting the negative root gives a value of $\sigma = 22\%$.

(iii)
$$d_2 = d_1 - \sigma \sqrt{T} = -1.11$$
. Thus $P = Ke^{-rT} \Phi(-d_2) - S_0 \Phi(-d_1)$
= $150e^{-r} \Phi(-d_2) - 117.98\Phi(-d_1) = 147.0298 \Phi(-d_2) - 117.98\Phi(-d_1)$
= $147.0298 \times 0.8665 - 117.98 \times 0.81327 = \31.4517

(iv) Using C to denote the call option, P the put option and S the stock we know that:

$$\Delta_{\rm C} - \Delta_{P} = \Delta_{S} = 1$$

 $\Gamma_{C} = \Gamma_{P} \text{ and } \Gamma_{S} = 0$

So since we hold 100,000 call options, we must be short 100,000 put options and 100,000 shares to get a gamma and delta neutral portfolio.

Alternative calculation approaches were awarded full marks if candidates reached the right conclusions.

12.

- i) The assumptions underlying the Black-Scholes model are as follows:
- 1. The price of the underlying share follows a geometric Brownian motion. [1/2]
- 2. There are no risk-free arbitrage opportunities. [1/2]
- 3. The risk-free rate of interest is constant, the same for all maturities and the same for borrowing or lending. [1/2]
- 4. Unlimited short selling (that is, negative holdings) is allowed. [1/2]
- 5. There are no taxes or transaction costs. [1/2]
- 6. The underlying asset can be traded continuously and in infinitesimally small numbers of units. [1/2]

ii)

Data:
$$S=8$$
; $K=9$; $r=2\%$; $\sigma=20\%$; $T=0.25$
By the Black-Scholes formula:
$$-d_1=1.0778 \qquad \qquad [0.5]$$

$$-d_2=1.1778 \qquad \qquad [0.5]$$

$$N(-d_1)=0.8594 \qquad \qquad [0.5]$$

$$N(-d_2)=0.8806 \qquad \qquad [0.5]$$
Therefore $P_0=9e^{-0.02\times0.25}\times0.8806-8\times0.8594 \qquad \qquad [1]$

$$=1.01 \qquad \qquad [1]$$

iii) As interest rates increase in the market, the expected return required by investors in stock tends to increase [0.5] However, the present value of any future cash flow generated by option contracts decreases [0.5] The combined impact of these two effects is to decrease the value of the put option [1] Rho is negative for a put option [0.5] put options become less valuable in times of increasing interest rates because they effectively defer the selling of a share and so delay access to the cash required to obtain the risk-free rate [0.5]

FINANCIAL ENGINEERING 1

IACS

13. Both models are:

- Continuous-time Markov models
- Ito processes
- One-factor models
- Usually defined in terms of a standard Brownian motion under risk-neutral probability measure
 The SDEs defining the two models are similar:
 - Vasicek: dr(t) = α[μ-r(t)]dt + σdW(t)
 - Hull-White: dr(t) = α[μ(t)-r(t)]dt + σdW(t)

Additionally, both models:

- imply the short-rate is mean-reverting
- imply the future short rate has a normal distribution
- allow negative values for the short rate
- are mathematically tractable, although Hull-White model is algebraically a bit more complicated

Key differences:

Vasicek model is time homogenous (μ constant), but Hull-White model is not (μ time-dependent).
Hull-White model has to be calibrated to match the current pattern of bond prices.
Hull-White model can provide a better fit to historical data.

14.

i.
$$dr(t) = \alpha(\mu - r(t))dt + \sigma(\sqrt{r(t)}d\widetilde{W}(t))$$
 or $dr(t) = 0.2(0.08 - r(t))dt + 0.1(\sqrt{r(t)}d\widetilde{W}(t))$

ii. Revised SDE is

$$dr(t) = \alpha(\mu - r(t))dt + \sigma(\sqrt{r(t)}d\widetilde{W}(t) + \varphi r(t)dt$$

$$dr(t) = (\alpha - \varphi)(\frac{\alpha\mu}{\alpha - \varphi} - r(t))dt + \sigma(\sqrt{r(t)}d\widetilde{W}(t)$$

$$dr(t) = (0.14)(0.1143 - r(t))dt + 0.1(\sqrt{r(t)}d\widetilde{W}(t)$$
 Hence the revised parameters are as follows:
$$\alpha' = 0.14, \, \mu' = 0.1143 \, \sigma' = 0.1$$

FINANCIAL ENGINEERING 1

iii. Bond prices at time 5 and 10:

	Time 5	Time 10	Marks
$\theta = \sqrt{\alpha'^2 + 2\sigma'^2}$	0.199	0.199	1
$b(\tau) = \frac{2(e^{\theta\tau} - 1)}{(\theta + \alpha')(e^{\theta\tau} - 1) + 2\theta}$	3.494	4.975	2 (1 for each correct $b(\tau)$)

$a(\tau) = \frac{2\alpha'\mu'}{\sigma'^2} \ln \left(\frac{2\theta(e^{(\theta+\alpha')\tau/2})}{(\theta+\alpha')(e^{\theta\tau}-1)+2\theta} \right)$	-0.1581	-0.5058	2 (1 for each correct a(τ))
$B(t,T) = e^{a(\tau)-b(\tau)r(t)}$	0.6685	0.4257	2 (1 for each correct B)

15

- INSTITUTE OF ACTUARIAL
 - **ATIVE STUDIES**

- 1. (Equation of both the models)
- 2. Both are one factor model
- 3. BDT is not mean reverting whereas VM is.
- 4. Volatility parameter is constant for both the models.
- 5. Interest rates are strictly positive for BDT whereas they can be negative in VM.
- Interest rates are log normally distributed for BDT whereas they are normally of for VM.
- 7. Both the models are simple to calibrate.
- 8. Both the models cannot be used to price complex derivatives

FINANCIAL ENGINEERING 1
ASSIGNMENT 2 SOLUTIONS

i) Similarities:

Both are one factor models.

Both have drifts that are deterministic

Both show some degree of local mean reversion

Differences

Black-Karasinski Model	Vasicek Model	
Model given by	$dr(t) = \alpha(\mu - r(t))dt$	
$d(\ln r(t)) = k(t)(\theta(t) - \ln r(t))dt$	$-\sigma dW(t)$	
$-\sigma(t)dW(t)$	1,1	
In r can take any value but r will	The interest rates can go	
always be positive	negative as per this model	
Local mean reversion of ln r. Hence	Local mean reversion of the	
r/r ₀ shows local mean reversion.	interest rates	
Time- heterogeneous model	Time-homogenous model	
Speed of mean reversion is time	Speed of mean reversion is	
dependent	constant	
Complex to model (in comparison to	Very easy to model	
Vasicek Model)		

ii) In(r) follows a normal distribution hence 'r' follows a log-normal distribution. FACTUARIAL

& QUANTITATIVE STUDIES

FINANCIAL ENGINEERING 1
ASSIGNMENT 2 SOLUTIONS