

Subject: Financial Engineering 1

Chapter: Unit 2

Category: Practice Questions

1. CT8 April 2010 Q1

Let $(X_t; t \ge 0)$; be a stochastic process satisfying:

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s$$

where W is a standard Brownian motion. Let $f: \Re \times \Re \to \Re$ be a function, twice partially differentiable with respect to x, once with respect to t.

(i) State the stochastic differential equation for f (t, X_t).

Let
$$dX_t = -\gamma X_t dt + \sigma dW_t$$

(ii) Prove that the solution of this stochastic differential equation is given by:

$$X_{t} = X_{0} \exp(-\gamma t) + \sigma \int_{0}^{t} \exp(\gamma (s-t)) dW_{s}$$
1 | INSIIIUIE OF ACTUARIAL

& QUANTITATIVE STUDIES

2. CT8 April 2010 Q7

- (i) State the Cameron-Martin-Girsanov Theorem.
- (ii) Derive the value of a which makes $exp(\sigma B_t at)$ a martingale when B is a standard Brownian Motion.

In a Black-Scholes market, the stock price is given by:

 $S_t = S_0 \exp(0.2B_t + 0.2t)$, where B is a standard Brownian Motion under the real-world measure.

A derivative security written on this stock in the same market has price:

 $D_t = 2 \exp(0.6B_t + 0.39t)$ at time t.

- (iii) (a) Calculate the value of c such that B_t + ct is a standard Brownian Motion under the Equivalent Martingale Measure.
- (b) Calculate the risk-free rate of interest.

3. CT8 September 2010 Q6

Under the real-world measure P, W is a standard Brownian motion and the price of a stock, S is given by $S_t = S_0 \exp(\sigma W_t + (\mu - \frac{1}{2} \sigma^2)t)$.

The continuously compounded risk-free rate of interest is r and a zero coupon bond with maturity T has price $B_t = e^{-r(T-t)}$.

Suppose that in the market any contract which pays $f(S_t)$ at time T is valued at:

$$p_t = E[e^{-r(T-t)} f(S_t)\Delta_T | F_t]$$

Where $\Delta_T = \exp(mW_t - \frac{1}{2}m^2t)$ for $t \le T$ for some real number m.

- i) a) Prove using Ito's formula that, Δ_T is a martingale.
 - b) Show that $E[\exp(mW_t)] = \exp(\frac{1}{2}m^2t)$
- ii) a) Derive an expression for p_0 when f(x) = x.
 - a) Derive an expression for p_0 when f(x) = x. b) Show that there is an arbitrage in the market unless $m = (r \mu)/\sigma$.

4. CT8 September 2011 Q3

An investor wishes to save for a retirement fund of £100,000 in 10 years' time. The instantaneous, constant continuously compounded risk-free rate of interest is 4% per annum. The investor can purchase shares on a non-dividend paying security with price St governed by the Stochastic Differential Equation (SDE):

& QUANTITATIVE STUDIES

$$dS_t = S_t (\mu dt + \sigma dZ_t)$$

where:

- Z_t is a standard Brownian motion
- $\mu = 12\%$
- $\sigma = 25\%$
- t is the time from now measured in years; and
- $S_0 = 1$
- (i) (a) Derive the distribution of St.
- (b) Calculate the amount, A, that the investor would need to invest in shares to give a 50:50 probability of building up a retirement fund of £100,000 in 10 years' time.

PRACTICE QUESTIONS UNIT 2

5. CT8 September 2011 Q6

Under the real-world probability measure, P, the price of a zero-coupon bond with maturity T is given by:

$$B(t, T) = \exp\left\{-(T - t)r_t + \frac{\sigma^2}{6}(T - t)^3\right\}$$

where r_t is the short rate of interest at time t and satisfies the following stochastic differential equation under the real-world measure P:

$$dr_t = \mu r_t dt + \sigma dZ_t$$

where $\mu > 0$ and Z_t is a standard Brownian motion under P.

- (i) Derive a formula for the instantaneous forward rate f(t, T), based on this model.
- (ii) Derive an expression for the market price of risk.
- (iii) Deduce the stochastic differential equation for r_t under the risk-neutral measure Q defining all terms used.

QUANTITATIVE STUD

6. CT8 April 2013 Q5

(i) State the five key features of a standard Brownian motion B_t .

Consider a stochastic differential equation

$$dX_t = Y_t dB_t + A_t dt,$$

Where A_t is a deterministic process & Y_t is a process adapted to the natural filtration of B_t

- (ii) Write down Ito's lemma for $f(t, X_t)$, where f is a suitable function
- (iii) Determine $df(t, X_t)$ Where $f(t, X_t) = e^{2tXt}$.

7. CT8 April 2013 Q6

Suppose that at time t we hold the portfolio (a_t, b_t, c_t) where a_t, b_t and c_t represent the number of units held at time t of securities with respective price processes A_t , B_t and C_t . Assume (a_t, b_t, c_t) are previsible. Let V_t be the value of this portfolio at time t.

(i) Explain what it means for (a_t, b_t, c_t) to be previsible.

- (ii) Write down an equation for the instantaneous change in the value of the portfolio, including cash inflows and outflows, at time t.
- (iii) Give the condition for this portfolio to be self-financing.
- (iv) Define a replicating strategy for a derivative with payoff X at a future time U, contingent on the path taken by at, bt and ct
- (v) Describe how the no-arbitrage condition and a self-financing strategy can be used to value the derivative in (iv) at time 0.
- (vi) Give a condition for the market to be complete.

8. CT8 September 2013 Q5

The share price in Santa Insurance Co, S_t , is currently 97p and can be modelled by the stochastic differential equation:

$$dS_t = 0.4 \frac{S_t}{dt} + 0.5 \frac{S_t}{dB_t}$$

where B_t is a standard Brownian motion

- (i) (a) Determine $d\log S_t$, using Ito's Lemma.
 - (b) Calculate the expectation and variance of the Santa Insurance Co share price in two years' time.

The share price in Rudolf financial services plc. R_t is also currently at 97p & can be modelled by the stochastic differential equation

$$dR_t = -0.4R_t dt + 0.5dB_t$$

Let $U_t = e^{0.4t} R_t$

- (ii) (a) Calculate dU_t .
 - (b) Calculate the expectation and variance of the Rudolf Financial Services plc share price in two years' time.

9. CT8 September 2013 Q6

A non-dividend-paying stock has a current price of 300p. Over each of the next two three-month periods its price will either go up by 30p or down by 30p. Price movements for each period are independent of each other. An investment in a cash account returns 2% per quarter.

PRACTICE QUESTIONS UNIT 2

A European call option on the stock pays out in six months based on a strike price of 290p. The price of the stock is to be modelled using a binomial tree approach with three-month time steps.

(i) Calculate the value of the call option today using a risk-neutral pricing approach.

Assume that the real-world probability of the stock price moving up in each of the next three month periods is 0.7

- (ii) (a) Calculate the values of the state price deflator after six months
- (b) Calculate and the value of the call option today using your answers to part (ii)(a).
- (c) Compare this to your answer to part (i).

Assume that the real-world probability has now dropped from 0.7 to 0.6.

- (iii) (a) Explain, without performing any further calculations, how the state price deflator would change in value.
- (b) Comment on the impact that this would have on the option price.

10. CT8 April 2014 Q3

Let W be a standard Brownian motion.

(i) State the continuous-time log-normal model of a security price S, defining all the terms used.

INSTITUTE OF ACTUARIAL

& QUANTITATIVE STUDIES

Let f be a function of t and W_t².

(ii) (a) Find a function f such that f (t, Wt2) is a Ft -martingale, with F the Brownian filtration.

Hint:
$$E(W_t^2|\mathcal{F}_s) = W_s^2 + t - s$$
 for all $t \ge s$.

(b) Use Ito's lemma to show that f (t, Wt2) is a process with zero drift.

Let X be the process defined as $X_t = t^{\alpha} W_{t^{\beta}}$

(iii) Derive the values of α β and for which Xt defines a standard Brownian motion.

11. CT8 September 2014 Q3

Let $(Z_t: t \ge 0)$ be a standard Brownian motion.

(i) Calculate the probability of the event that $Z_1 > 0$ and $Z_2 < 0$.

Hint: Write $Z_1 = W$, $Z_2 = W + X$, where W and X are both independent, identically distributed N(0,1) random variables.

PRACTICE QUESTIONS UNIT 2

- (ii) State the model for geometric Brownian motion.
- (iii) Explain why the standard Brownian motion is less suitable than the geometric Brownian motion as a model of stock prices.

12. CT8 April 2015 Q5

Let $(X_t; t \ge 0)$ be a stochastic process satisfying $dX_t = \mu_t dt + \sigma_t dW_t$ where W_t is a standard Brownian motion.

Let f(t,x) be a function, twice partially differentiable with respect to x, once with respect to t.

(i) State the stochastic differential equation for $f(t, X_t)$.

Let $dX_t = \lambda X_t dt + \sigma dW_t$

(ii) Solve this differential equation, by considering $X_t = U_t e^{\lambda t}$ or otherwise.

13. CT8 September 2015 Q5

An actuary plans to retire in five years' time, and hopes to celebrate retirement with a round-the-world cruise. The cruise will cost $\leq 20,000$. The actuary chooses to save for the cruise by buying non-dividend paying shares with price S_t governed by the Stochastic Differential Equation:

& QUANTITATIVE STUDIES

$$dS_t = S_t(\mu dt + \sigma dZ_t)$$

where:

- Z_t is a standard Brownian motion.
- $\mu = 10\%$.
- $\sigma = 20\%$.
- t is the time from now measured in years; and
- $S_0 = 1$.

The instantaneous, constant, continuously compounded risk-free rate of interest is 4% p.a. Derive the distribution of S_t .

14. CT8 April 2016 Q6

Suppose that at time t a portfolio (ϕ_t, ψ_t) is held, where ϕ_t represents the number of units of a stock, with price S_t , held at time t and ψ_t is the number of units of a cash bond, with price B_t , held at time t. The processes ϕ and ψ are previsible.

Let $V(t) = \phi_t S_t + \psi_t B_t$ be the value of the portfolio at time t.

(i) Explain what it means for this portfolio to be self-financing.

Consider a stock paying a continuous dividend at a rate δ and denote its price at any time t by S_t . Let C_t and P_t be the price at time t of a European call option and European put option respectively, written on the stock S, each with strike price K and maturity $T \ge t$.

The instantaneous risk-free rate is denoted by r.

(ii) Prove put-call parity in this context by constructing two self-financing portfolios whose value must be equal by the principle of no arbitrage.

15. CT8 April 2017 Q3

Consider a non-dividend-paying security with price S_t at time t. The security price follows the stochastic differential equation:

$$dS_t = S_t(\mu dt + \sigma dZ_t)$$

where:

- Z_t is a standard Brownian motion
- μ = 16% per annum
- σ = 25% per annum
- t is the time from now measured in years
- $S_0 = 1$

Derive the distribution of S_t.

16. CT8 April 2017 Q6

The market price S_t of a traded security satisfies the following stochastic differential equation:

$$dS_t = (\mu - \lambda \sigma) S_t dt + \sigma S_t dW_t$$

where W_t is a standard Brownian motion under the probability measure P*.

PRACTICE QUESTIONS UNIT 2

- (i) Determine the value of λ such that the discounted asset price process $\tilde{S}_t = e^{-rt}S_t$ is a martingale under the given probability measure.
- (ii) Explain whether the probability measure P^* is the real-world or risk-neutral measure, for the value of λ obtained in part (i).

17. CT8 September 2017 Q5

- (i) State the Cameron-Martin-Girsanov theorem.
- (ii) State an important property of the discounted value of a security price process under the risk-neutral measure.

The price process S_t of a traded security satisfies the following stochastic differential equation:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

where W_t is a standard Brownian motion under the real-world probability measure, and μ and σ are constants, with $\sigma > 0$.

Let r > 0 be the continuously compounded risk-free rate of interest.

- (iii) Show, using parts (i) and (ii), that $W_t + \lambda t$ is a Brownian motion under the risk-neutral probability measure, if $\lambda = (\mu r)/\sigma$
- (iv) Calculate the value of λ in the case in which $\mu = 0.04 + r$ and $\sigma = 0.4$.

Another traded asset has a price process satisfying the stochastic differential equation

$$dA_t = (0.06 + r)A_t dt + \gamma A_t dW_t$$

(v) Determine the value of the volatility coefficient y, using your result from part (iv).

18. CT8 April 2018 Q3

The value of an investment asset follows the equation $A(t) = \exp(B_t)$, where B_t follows standard Brownian motion.

(i) State the five defining properties that apply to B_t as a standard Brownian motion.

An actuarial student invests \$1,000 in the asset at time 0.

- (ii) Calculate the expected value of this investment at time 5.
- (iii) Calculate the probability that the value of the student's investment is less than \$10,000 at time 5

19. CT8 April 2018 Q7

(i) Define a complete market.

The price process of a traded security satisfies the following stochastic differential equation $dS_t = \mu S_t dt + \sigma S_t dW_t$,

where W_t is a Brownian motion under the real-world probability measure P. Let r > 0 be the continuously compounded risk-free rate of interest, with $r \neq \mu$.

- (ii) Show that the discounted stock price $e^{-rt}S_t$ is not a martingale under the real-world probability measure P.
- (iii) Demonstrate how the discounted asset price $e^{-rt}S_t$ can be a martingale under an equivalent martingale measure Q.

20. CT8 September 2018 Q9

The price process of a non-dividend paying stock S_t satisfies the following stochastic differential equation

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

where W_t is a Brownian motion under the real-world probability measure P. Let V(t) be the value at t of a self-financing portfolio, consisting of Φ_t stocks and ψ_t cash bond.

- (i) Show that $d(e^{-rt}V(t)) = \Phi_t d(e^{-rt}S_t)$.
- (ii) Determine the conditions under which the discounted value e^{-rt}V (t) is a martingale.

IACS

21. CM2A September 2019 Q2

(i) State the four key features of a standard Brownian motion B_t.

Consider a stochastic differential equation

$$dX_t = Y_t dB_t + A_t dt$$

where A_t is a deterministic process and Y_t is a stochastic process adapted to the natural filtration of B_t .

- (ii) Write down Ito's lemma for $f(t, X_t)$, where f is a suitable function.
- (iii) Determine $df(t,X_t)$ where $f(t,X_t) = exp(4t^2 X_t)$.

22. CM2A September 2020 Q7

Consider the price, D_t , at time t of a call option on an underlying stock S_t . The call option has a strike price of K and matures at time T. Let C_t be a cash account at time t (t < T) and r be the continuously compounded risk-free rate. T is measured in years.

INSTITUTE OF ACTUAR

(i) Define a self-financing strategy (a_t, b_t).

Consider the two portfolios below:

A: at units of St and bt units of Ct

B: 1 unit of D_t

(ii) Construct two equations that must be satisfied so that Portfolio A is self-financing and replicates the price of Portfolio B.

Consider now the scenario where:

$$S_0 = £20, T = 2, K = £20, r = 5\%$$

In the period from t = 0 to t = 1, the price can either increase by 50%, or decrease by 20%. In the period from t = 1 to t = 2, the price can either increase by 40%, or decrease by 30%.

- (iii) Calculate the price of the call option at t = 0 using a 2-period binomial tree.
- (iv) Derive the portfolio of stocks and cash at t = 0 that replicates the option value at t = 1.
- (v) Show that the replicating portfolio from part (iv) matches the option price at t = 1, for the two possible share prices at t = 1.

PRACTICE QUESTIONS UNIT 2

(vi) Comment on the limitations of using a binomial tree to set up and maintain a replicating portfolio for this option in the real world.

23. CM2A April 2022 Q4

Suppose that under the unique equivalent measure martingale measure, Q, for a term structure model, the Stochastic Differential Equation satisfied by the instantaneous interest rate r is:

$$dr_t = \alpha(\mu - r_t)dt + \sigma dZ_t$$

where $\alpha > 0$, μ and σ are fixed parameters and under Q, Z is a standard Brownian Motion.

The process X is defined by:

$$X_t = r_t b(T - t) + \int_0^t r_s \, ds$$

 $X_t = r_t b(T - t) + \int_0^t r_s \, ds$ where the function b is given by b(s) = $\frac{(1 - e^{-\alpha s})}{\alpha}$

The function f is given by $f(x,t) = \exp(a(T-t)-x)$ where a is a differentiable function.

(i) Apply Ito's formula to f(X_t, t).

[Hint: You may use, without proof, the fact that $dX_t = A_t dt + B_t dZ_t$ where $A_t = \alpha \mu b(T - t)$, and $B_t =$ $\sigma b(T - t)$.]

- (ii) Find a differential equation that the function a must satisfy, in order for f(Xt, t) to be a martingale.
- (iii) Determine an additional condition on a that is necessary for a bond with unit payoff at time T to have a price given by the formula:

$$B(t, T) = f(X_t, t) \exp\left(\int_0^t r_s ds\right)$$

24. CM2A September 2023 Q7

Consider the process At defined by the following integral:

$$\int_0^t W_s ds$$

where W_s is a standard Brownian motion.

- (i) Explain why this process is not a martingale.
- (ii) Show that A_t is Normally distributed with mean 0 and variance $t^3/3$.

[**Hint**: Note that $tW_t = \int_0^t t dW_s$.]

INSTITUTE OF ACTUARIAL & QUANTITATIVE STUDIES