

Financial

Subject: Engineering 2

Chapter:

Category: Assignment Questions

IACS

1. Consider the following stochastic differential equation for the instantaneous risk free rate (also referred to as the short-rate):

$$dr(t) = a(b-r(t))dt + \sigma dW_t$$

Its solution is given by:

$$r(t) = r_0 \exp(-at) + b(1 - \exp(-at)) + \sigma \exp(-at) \int_0^t \exp(as) dW_s$$

You may also use the fact that for $T \ge t$:

$$\int_{t}^{T} r(u)du = b(T-t) + (r(t)-b)\frac{1-\exp(-a(T-t))}{a} + \frac{\sigma}{a} \int_{t}^{T} (1-\exp(-a(T-s)))dW_{s}$$

- i) Derive the price at time t of a zero-coupon bond with maturity T.
- ii) a) State the main drawback of such a model for the short-rate.
 - b) State the name and stochastic differential equation of an alternative model for the short-rate that is not subject to the drawback.
- 2. State eight desirable characteristics of a term-structure model.
- 3. Consider the following model for the short-rate r:

$$dr_{t} = \mu r_{t} dt + \sigma dZ_{t}$$

where $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ are fixed parameters and \boldsymbol{Z} is a standard Brownian motion.

i) Comment on the suitability of this model for the short-rate.

An alternative model for the short-rate is the Vasicek model:

$$dr_{t} = a(\mu - r_{t})dt + \sigma dZ_{t}$$

ii) Derive an expression for $\int_{t}^{T} r(u)du$

- iii) State the distribution of $\int_{t}^{T} r(u)du$
- 4. Write down the properties of the following two models for interest rates:
 - a) The one-factor Vasicek model
 - b) The Cox-Ingersoll-Ross model

[You are not required to give any formulae for the models.]

The Vasicek term structure model is described by the following stochastic differential equation:

$$dr_{t} = a(b - r_{t})dt + \sigma dW_{t}$$

With initial value r_0 and $a,b,\sigma > 0$.

i) Show, by solving the Vasicek stochastic differential equation, that:

$$r_{t} = r_{0}e^{-at} + b(1 - e^{-at}) + \sigma \int_{0}^{t} e^{-a(t-s)}dWs$$

- ii) Determine the expectation, the variance and the distribution of the short rate r_{t}
- 5. Consider a market with the following bonds in issue.

Principal	Expire (years)	Coupon	Price	Zero rate	Forward rate
value	T	(annual*)		R(0, T)	F(0, S, T)
100	0.25	0	97.5	(a)	
100	0.5	0	94.9	(b)	F(0, 0.25, 0.5) = 10.81%
100	1	0	90.0	10.54%	F(0, 0.5, 1) = (d)
100	1.5	8%	(c)	10.68%	F(0, 1, 1.5) = (e)
(* half the stated coupon is paid every 6 months)					

- i) Calculate the values of (a), (b), (c), (d), (e) in the table above.
- ii) Write down the stochastic differential equations of two standard models for the short

FE 2 -UNIT 3 & 4

ASSIGNMENT QUESTIONS

rate of interest.

- 6. A Eurodollar futures price changes from 96.76 to 96.82. What is the gain or loss to an investor who is assuming that a company has fixed debt of £40m with a term of 10 years, the value of the equity in the company is £20m and the Merton model for credit risk holds true. The risk free rate of return is 5% p.a. and there are no other dividends or interest payments.
 - i) Explain how to calculate the (risk neutral) probability of default. You do not have to calculate the probability, but should state how each value would be calculated.

In a particular two state model for credit rating with deterministic transition intensity, the risk free rate is a constant, r, the recovery rate is δ and the zero coupon bond price is given by:

$$B(t,T) = e^{-r(T-t)} \left[1 - (1-\delta) \left(1 - e^{\frac{-(T^2 - t^2)}{4}} \right) \right].$$
 CTUARIA

- ii) a) State the general formula for the zero coupon bond prices in a two state model for credit ratings.
 - b) Deduce the risk-neutral default intensity for the particular two state model above.
- 7. Define default risk and describe default correlation.
- 8. Define and Explain:
 - i) Default Risk
 - ii) Recovery Risk
 - iii) Exposure Risk
- 9. What are credit events? Which types of credit events can occur?