Time: 2 hours Total Marks: 60 marks

## Note:

- 1. The candidate has option to either attempt question 4A or question 4B. Rest all questions are mandatory.
- 2. Numbers to the right indicate full marks.
- 3. The candidates will be provided with the formula sheet and graph papers (if required) for the examination.
- 4. Use of approved scientific calculator is allowed.

```
5 Marks
Q1 A
  #Q1
  #A
> #(a)
> mu = 10000
> sigma = sqrt(90000)
> pnorm(10000, mu, sigma, lower.tail = FALSE)
[1] 0.02275013
> #(b)
> qnorm(0.99,mu,sigma)
[1] 10697.9
> #(c)
> var(rnorm(10,mu,sigma))
[1] 79647.27
  #The variance of the sample is quite lower compared to the variance of 9
0000 provided to us.
Q1 B
                                                                                          5 Marks
> #(B)
> boxplot(Sepal.Width~Species, data = iris, col = c("red","blue","green"), main = "Boxplot of Sepal Width", ylab = "Sepal Width", xlab = "Species")
                                                Boxplot of Sepal Width
             4.0
             3.5
                                                                                    virginica
                               setosa
                                                         versicolor
```

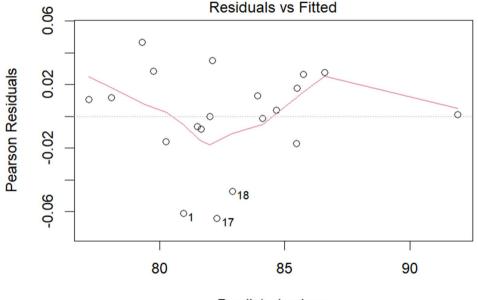
Species

Comment: Setosa has the highest Sepal Width and versicolor has the lowest. The

spread virginica is the lowest. Both Setosa and virginica seem to have a symmetric distribution but versicolor is slightly negatively skewed.

```
Q1 C
> #(C)
> #(a)
> x = c(4,5,6,7,8,9)
> obs = c(3,9,18,29,25,16)
> p = 1/(sum(x*obs)/sum(obs))
> p
[1] 0.1404494
> exp = sum(obs)*c(pgeom(4,p),dgeom(5:8,p),pgeom(8,p,lower = FALSE))
> chisq_cal = sum((obs-exp)^2/exp)
> df = length(x) - 1 - 1#-1 fore estimating p
> pchisq(chisq_cal,df,lower = FALSE)
[1] 4.578713e-64
> #Since the p-value is very small we can conclude that Geometric is not a good fit.
```

```
Q2 A
                                                                          5 Marks
  #Q2
> #A
> #(a)
> dance = read.csv("dance.csv")
> fitA = glm(Final~Judges+Poll, family = Gamma("identity"), data = dance)
> fitA
Call: glm(formula = Final ~ Judges + Poll, family = Gamma("identity"),
    data = dance)
Coefficients:
(Intercept)
                                    Pol1
                   Judges
    11.2205
                   0.7058
                                  0.1518
Degrees of Freedom: 19 Total (i.e. Null); 17 Residual Null Deviance: 0.04907
Residual Deviance: 0.01746
                                 AIC: 100.5
> #(b)
> plot(fitA,1)
```



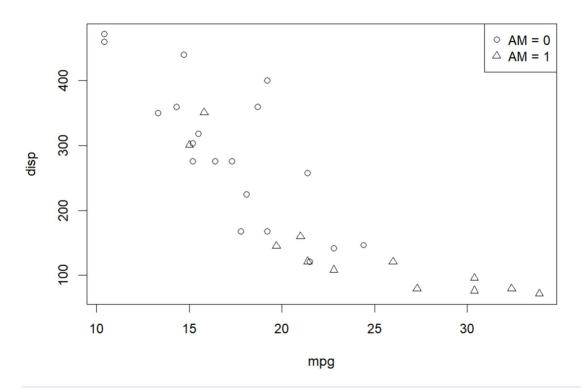
Predicted values glm(Final ~ Judges + Poll)

There is some pattern between the Pearson residuals and the fitted value which needs further investigation. The outliers (1,17,18) observations might also need some evaluation.

Q2 B 5 Marks

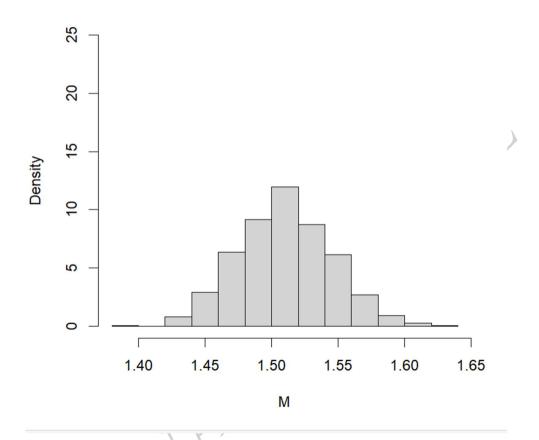
```
> #(B)
> data = read.csv("data_Q2B_PaperB.csv")
> weight = data$weight
> n = length(weight)
> S = sd(weight)
> sigma_0 = sqrt(121)
> chisq_cal = (n-1)*S^2/sigma_0^2
> chisq_cal
[1] 87.44421
> pchisq(chisq_cal,n-1,lower.tail = FALSE)
```

## MPG vs DISP based on AM



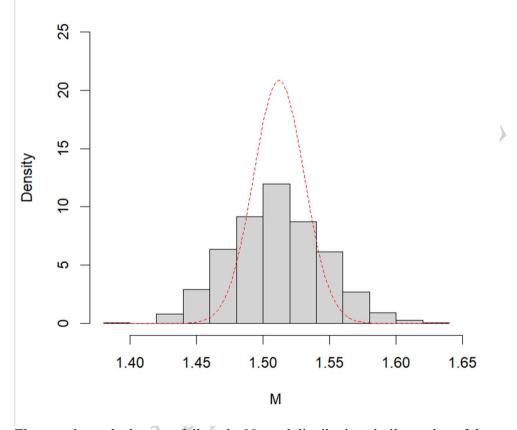
```
Q3 A
                                                                                             30 Marks
> #Q3
> #A
> mu = 1.512
> sigma = 0.0741
> #(a)
> mu
[1] 1.512
> sigma/sqrt(15)
[1] 0.01913254
        The distribution would be N(1.512,0.019^2)
> #(b)
> n = 15
> set.seed(2024)
> y = rnorm(n,mu,sigma)
> #(c)
> dens = density(y)
> M = dens$x[which.max(dens$y)]
> M
[1] 1.549025
> #(d)
> M = numeric(1000)
> set.seed(2024)
> for(i in 1:1000){
     y = rnorm(n,mu,sigma)
dens = density(y)
M[i] = dens$x[which.max(dens$y)]
> hist(M, ylim = c(0,25), main = "Histogram of Sample Mode", freq = FALSE)
```

## **Histogram of Sample Mode**



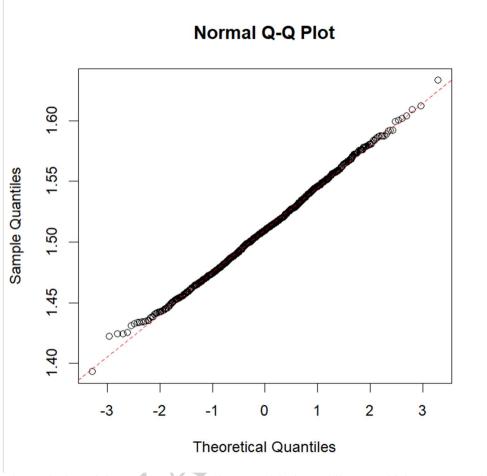
> #(f)
> curve(dnorm(x,mu,sigma/sqrt(n)),add = TRUE, col = "red",lty =2)

## **Histogram of Sample Mode**



The sample mode does not follow the Normal distribution similar to that of the sample mean. The spread of the sample mode is higher than the mean and hence there is a high difference between the empirical distribution and the distribution given by the sample mean.

```
> #(h)
> qqnorm(M)
> qqline(M, lty = 2, col = "red")
```



The majority of the points seem to line up with the red line specifying a Normal fit. So the sample mode seems to be following a Normal distribution. There are small differences at the tails which should be studied further.

OR

```
5.755
                      5.075
> #(b)
> var.test(T1,C1, alt = "t")
            F test to compare two variances
data:
          T1 and C1
F = 0.79282, num df = 9, denom df = 9, p-value = 0.7351 alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval: 0.1969261 3.1919023
sample estimates:
ratio of variances
              0.7928234
> #(c)
> obs = mean(C1) - mean(T1)
> results = c(C1,T1)
> index = 1:length(results)
> p = combn(index,length(index)/2)
> dif = numeric(nrow(p))
> for(i in 1:nrow(p)){
+ dif[i] = mean(results[p[,i]]) - mean(results[-p[,i]])
  length(dif[dif<=obs])/length(dif)</pre>
[1] 0.4
 (II)
> #II
> #(a)
> claims = 0:8
> obs = c(28,126,0,111,31,30,0,0,39)
> lambda = sum(claims*obs)/sum(obs)
> exp = sum(obs)*c(dpois(0:7,lambda),ppois(7,lambda,lower.tail = FALSE))
> chisq_cal = sum((obs-exp)^2/exp)
> pchisq_cal,length(obs)-1-1,lower = FALSE)
[1] 2.615949e-122
> #(b)
> n = 8
> p = 0.358
> exp = sum(obs)*dbinom(0:8,n,p)
> chisq_Cal = sum((obs-exp)^2/exp)
  pchisq(chisq_Cal,length(obs)-1,lower = FALSE)
```