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Introduction

Overview

Basic Definition

Precise form

In modelling, the total variation of the measured data can be
described by partitioning the variability into its deterministic
part, which is a function of the data values, plus some left-
over random error.

The data that vary deterministically can be explained by a
certain relationship using mathematical functions.
For example, using line of best fit for linear relationships.

However, for the left-over random errors, the relationship will
not be purely deterministic. The random errors cannot be
characterized individually, but will follow some probability
distribution that will describe the relative frequencies of
occurrence of different-sized errors.

For example, a histogram can be fit to the random errors
which shows the relative frequencies of observing different-
sized random errors.

Then the relative frequencies of the random errors can be
summarized by a (normal) probability distribution.

In simple terms, statistical modeling is a simplified,
mathematically-formalized way to approximate reality (i.e.
what generates your data) and optionally to make predictions
from this approximation.

The statistical model is the mathematical equation that is
used.

It is the concise description of the total variation in one
quantity Y, ,by partitioning it into

1. a deterministic component given by a mathematical
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Example
(Linear regression

analysis)

Example

(Multiple
regression
analysis)

function of one or more other quantities xi, X2, ...

plus

2. a random component that follows a particular
probability distribution.

Suppose that we have a population of school children, with
the ages of the children distributed uniformly, in the
population.

The height of a child will be stochastically related to the age:
e.g. when we know that a child is of age 7, this influences
the chance of the child being 1.5 meters tall.

We could formalize that relationship in a linear

regression model, like this: height;= bo + biage; + €;,

where bo is the intercept, b1 is a parameter that age is
multiplied by to obtain a prediction of height, €:is the error
term, and iidentifies the child.

This implies that height is predicted by age, with some error.

When forecasting financial statements for a company it may
be useful to do a multiple regression analysis to determine
how changes in certain assumption or drivers of business
will impact revenue or expenses in the future.

For instance; there may be very high correlation between the
number of salespeople employed by a company, the number
of stores they operate and the revenue the business
generates.
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What terminology do statisticians use
to describe models?

Model
Components

Form of Model

Response
Variable

There are three main parts to every model. These are
1. the response variable, usually denoted by y,

2. the mathematical function, usually denoted as,
f(Z; 8y
and

3. the random errors, usually denoted by €.

The general or basic form is given as;
¥ = a+ Pa; + €.

Most of the models have this general form.

The random errors that are included in the model make the
relationship between the response variable and the predictor
variables a "statistical" one, rather than a perfect deterministic
one. This is because the functional relationship between the
response and predictors holds only on average, not for each
data point

Let’s understand each component separately.

The response variable is the one we want to describe, to
explain, to predict. As a rule of thumb, the dependent variable
is often the one we represent on the Y axis in modelling charts.
It is also known as the dependent variable as the value of this
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Explanatory
Variable

Mathematical
Function

variable is dependent on certain factors or certain other
variables.

Explanatory variables, also referred to
as independent variables, are the ones we use to explain, to
describe or to predict the dependent variable(s).

Explanatory variables are often represented on the X axis.
They are also called as predictors or regressors.

The mathematical function consists of two parts. These parts
are the predictor variables x1, x2,... and the

parameters,Bll32,...

The predictor variables are observed along with the response
variable. They are the quantities described on the previous
page as inputs to the mathematical function,

(2 )
The collection of all of the predictor variables is denoted by

.

T fE(I],IQ,...}

The parameters are the quantities that will be estimated
during the modelling process. Their true values are unknown
and unknowable, except in simulation experiments.

As for the predictor variables, the collection of all of the
parameters is denoted by

3 5 = (.ﬁnj _d];.- i .)

The parameters and predictor variables are combined in
different forms to give the function used to describe the
deterministic variation in the response variable.
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Random errors Like the parameters in the mathematical function, the random
errors are unknown.

They are simply the difference between the data and the
mathematical function. They are assumed to follow a
particular probability distribution, however, which is used to
describe their aggregate behaviour.

The probability distribution that describes the errors has a
mean of zero and an unknown standard deviation.
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What are the models used for?

Main purposes

Estimation

Models are used for four main purposes:
1. Estimation,

2. Prediction,

3. Calibration, and

4. Optimization.

More detailed explanations of the uses for models are given
below;

The goal of estimation is to determine the value of the
regression function (i.e., the average value of the response
variable), for a particular combination of the values of the
predictor variables.

Regression function values can be estimated for any
combination of predictor variable values, including values for
which no data have been measured or observed.

Function values estimated for points within the observed
space of predictor variable values are sometimes called
interpolations.

Estimation of regression function values for points outside the
observed space of predictor variable values, called
extrapolations, are sometimes necessary, but require caution.

A critical part of estimation is an assessment of how much am
estimated value will fluctuate due to the noise in the data

NOTES

INTRODUCTION TO MODELLING




Prediction

Calibration

Optimization

The goal of prediction is to determine either
1. the value of a new observation of the response
variable, or

2. the values of a specified proportion of all future
observations of the response variable,

for a particular combination of the values of the predictor
variables.

Predictions can be made for any combination of
predictor variable values, including values for which no data
have been measured or observed.

As in the case of estimation, predictions made outside the
observed space of predictor variable values are sometimes
necessary, but require caution.

The goal of calibration is to quantitatively relate measurements
made using one measurement system to those of another
measurement system. This is done so that measurements can
be compared in common units or to tie results from a relative
measurement method to absolute units.

Optimization is performed to determine the values of process
inputs that should be used to obtain the desired process
output.

Typical optimization goals might be to maximize the yield of a
process, to minimize the processing time required to fabricate
a product, or to hit a target product specification with
minimum variation in order to maintain specified tolerances.
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What are some of the different statistical
methods for model building?

Selecting an
Appropriate
Stat Method for
Modeling

In order to build a statistical model, we need to be very careful
in selecting the method.

There are more general approaches and more competing
techniques available for model building. There is often more
than one statistical tool that can be effectively applied to a
given modeling application.

The large menu of methods applicable to modeling problems
means that there is both more opportunity for effective and
efficient solutions and more potential to spend time doing
different analyses, comparing different solutions and mastering
the use of different tools.

In the process of developing the model we will often come
across situations where we build a first basic model and then
run the model, perform calculations and try to improvise.

Every model you run tells you a story. Stop and listen to it.
Look at the coefficients. Look at R-squared. Did it change?
How much do coefficients change from a model with control
variables to one without?

When you pause to do this, you can make better decisions on
the model to run next.

Now we discuss some of the most popular and
well-established statistical techniques that are useful for
different model building situations
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Modelling
methods that we
will discuss

1] Linear Least
Squares
Regression

1. Linear Least Squares Regression
2. Nonlinear Least Squares Regression
3. Weighted Least Squares Regression

Least squares regression method is by far the most widely used
modelling method.

The least squares method is a statistical procedure to find the
best fit for a set of data points by minimizing the sum of the
offsets or residuals of points from the plotted curve.

Least squares regression is used to predict the behavior of
dependent variables.

This method of regression analysis begins with a set of data
points to be plotted on an x- and y-axis graph. An analyst
using the least squares method will generate a line of best fit
that explains the potential relationship between independent
and dependent variables.

Linear least square regression equation example;

Population Random
Slope Independent Error

Coefficient Vanatile term

Population
Y intercept

Dependent
Variable —_ \ N l /
Y. =B, +BX + €
o —_
: ~—
Linear component Random Error
component

Linear least squares regression also gets its name from the way
the estimates of the unknown parameters are computed — using
the “method of least squares”. In this method the unknown
parameters are estimated by minimizing the sum of

the squared deviations between the data and the model.
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2] Nonlinear Least
Squares
Regression

Example of the Least Squares Method

An example of the least squares method is an analyst who
wishes to test the relationship between a company’s stock
returns, and the returns of the index for which the stock is a
component.

In this example, the analyst seeks to test the dependence of the
stock returns on the index returns. To achieve this, all of the
returns are plotted on a chart. The index returns are then
designated as the independent variable, and the stock returns
are the dependent variable.

The line of best fit provides the analyst with coefficients
explaining the level of dependence.

Nonlinear least squares regression extends linear least squares
regression for use with a much larger and more general class of
functions. Almost any function that can be written in closed
form can be incorporated in a nonlinear regression model.

Nonlinear regression is a regression in which the dependent
variables are modelled as a non-linear function of model
parameters and one or more independent variables.

The reason that these models are called nonlinear regression is
because the relationships between the dependent and
independent parameters are not linear.

As the name suggests, a nonlinear model is any model of the
basic form,

Y - f(Xﬁ;B*)+€,

in which

i) the functional part of the model is not linear with respect to
the unknown parameters, 0,51,..., and

ii) the method of least squares is used to estimate the values of
the unknown parameters.
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Advantages

Disadvantages

3] Weighted Least
Squares
Regression

Advantages

Some examples of nonlinear models include:

a) f(x;B")=(BotP1x)/(1+P2x)
b) fix;B”)=p1xk2

The biggest advantage of nonlinear regression over other
techniques is the broad range of functions that can be fit.

The major cost of moving to nonlinear least squares from
simpler modelling techniques like linear least squares is the
need to use iterative optimization procedures to compute the
parameter estimates.

One of the common assumptions underlying most process
modelling methods, including linear and nonlinear least
squares regression, is that each data point provides equally
precise information about the deterministic part of the total
process variation.

Weighted Least Squares is an extension of simple regression.
Non-negative constants (weights) are attached to data points.
The values scattered close to each other in the centre certainly
reflect more information and hence should be given more
weightage than those scattered far away from each other and
those which are outliers.

It is used when any of the following are true:

1. Your data violates the assumption of homoscedasticity.

2. You want to concentrate on certain areas

3. You have any other situation where data points should not
be treated equally.

Weighted least squares has several advantages over other
methods, including:

It’s well suited to extracting maximum information from small
data sets.

It is the only method that can be used for data points of
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varying quality.

Disadvantages It requires that you know exactly what the weights are.
Estimating weights can have unpredictable results, especially
when dealing with small samples.

Therefore, the technique should only be used when your weight
estimates are fairly precise. In practice, precision of weight
estimates usually isn’t possible.

Sensitivity to outlier is a problem. A rogue outlier given an
inappropriate weight could dramatically skew your results.
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