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Introduction 

Overview In modelling, the total variation of the measured data can be 
described by partitioning the variability into its deterministic 
part, which is a function of the data values, plus some left- 
over random error. 

 
The data that vary deterministically can be explained by a 
certain relationship using mathematical functions. 
For example, using line of best fit for linear relationships. 

 
However, for the left-over random errors, the relationship will 
not be purely deterministic. The random errors cannot be 
characterized individually, but will follow some probability 
distribution that will describe the relative frequencies of 
occurrence of different-sized errors. 
For example, a histogram can be fit to the random errors 
which shows the relative frequencies of observing different- 
sized random errors. 
Then the relative frequencies of the random errors can be 
summarized by a (normal) probability distribution. 

Basic Definition In simple terms, statistical modeling is a simplified, 
mathematically-formalized way to approximate reality (i.e. 
what generates your data) and optionally to make predictions 
from this approximation. 

The statistical model is the mathematical equation that is 
used. 

Precise form It is the concise description of the total variation in one 
quantity Y, ,by partitioning it into 

1. a deterministic component given by a mathematical 
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function of one or more other quantities x1, x2 , … 

plus 

2. a random component that follows a particular 
probability distribution. 

 
Example 

(Linear regression 

analysis) 

 
Suppose that we have a population of school children, with 
the ages of the children distributed uniformly, in the 
population. 

The height of a child will be stochastically related to the age: 
e.g. when we know that a child is of age 7, this influences 
the chance of the child being 1.5 meters tall. 

We could formalize that relationship in a linear 
regression model, like this: heighti = b0 + b1agei + εi, 
where b0 is the intercept, b1 is a parameter that age is 
multiplied by to obtain a prediction of height, εi is the error 
term, and i identifies the child. 

This implies that height is predicted by age, with some error. 

 
Example 

(Multiple 
regression 
analysis) 

 
When forecasting financial statements for a company it may 
be useful to do a multiple regression analysis to determine 
how changes in certain assumption or drivers of business 
will impact revenue or expenses in the future. 

For instance; there may be very high correlation between the 
number of salespeople employed by a company, the number 
of stores they operate and the revenue the business 
generates. 
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What terminology do statisticians use 
to describe models? 

Model 
Components 

There are three main parts to every model. These are 
 

1. the response variable, usually denoted by y, 
 

2. the mathematical function, usually denoted as, 

 
 

and 
 

3. the random errors, usually denoted by €. 

 
Form of Model 

 
The general or basic form is given as; 

 

 

Most of the models have this general form. 

The random errors that are included in the model make the 
relationship between the response variable and the predictor 
variables a "statistical" one, rather than a perfect deterministic 
one. This is because the functional relationship between the 
response and predictors holds only on average, not for each 
data point 

 
Let’s understand each component separately. 

Response 
Variable 

The response variable is the one we want to describe, to 
explain, to predict. As a rule of thumb, the dependent variable 
is often the one we represent on the Y axis in modelling charts. 
It is also known as the dependent variable as the value of this 
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  variable is dependent on certain factors or certain other 
variables. 

Explanatory 
Variable 

Explanatory variables, also referred to 
as independent variables, are the ones we use to explain, to 
describe or to predict the dependent variable(s). 

 
Explanatory variables are often represented on the X axis. 
They are also called as predictors or regressors. 

Mathematical 
Function 

The mathematical function consists of two parts. These parts 
are the predictor variables x1, x2,… and the 

parameters,ᵝ1ᵝ2,… 

The predictor variables are observed along with the response 
variable. They are the quantities described on the previous 
page as inputs to the mathematical function, 

 
 

The collection of all of the predictor variables is denoted by 
 

  

 
The parameters are the quantities that will be estimated 
during the modelling process. Their true values are unknown 
and unknowable, except in simulation experiments. 
As for the predictor variables, the collection of all of the 
parameters is denoted by 

 

  

 
The parameters and predictor variables are combined in 
different forms to give the function used to describe the 
deterministic variation in the response variable. 
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Random errors Like the parameters in the mathematical function, the random 
errors are unknown. 

 
They are simply the difference between the data and the 
mathematical function. They are assumed to follow a 
particular probability distribution, however, which is used to 
describe their aggregate behaviour. 

 
The probability distribution that describes the errors has a 
mean of zero and an unknown standard deviation. 
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What are the models used for? 

Main purposes Models are used for four main purposes: 
1. Estimation, 
2. Prediction, 
3. Calibration, and 
4. Optimization. 

 
More detailed explanations of the uses for models are given 
below; 

Estimation The goal of estimation is to determine the value of the 
regression function (i.e., the average value of the response 
variable), for a particular combination of the values of the 
predictor variables. 

 
Regression function values can be estimated for any 
combination of predictor variable values, including values for 
which no data have been measured or observed. 

 
Function values estimated for points within the observed 
space of predictor variable values are sometimes called 
interpolations. 

 
Estimation of regression function values for points outside the 
observed space of predictor variable values, called 
extrapolations, are sometimes necessary, but require caution. 

 
A critical part of estimation is an assessment of how much am 
estimated value will fluctuate due to the noise in the data 
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Prediction The goal of prediction is to determine either 
1. the value of a new observation of the response 
variable, or 

 
2. the values of a specified proportion of all future 
observations of the response variable, 

 
for a particular combination of the values of the predictor 
variables. 

 
Predictions can be made for any combination of 
predictor variable values, including values for which no data 
have been measured or observed. 

 
As in the case of estimation, predictions made outside the 
observed space of predictor variable values are sometimes 
necessary, but require caution. 

Calibration The goal of calibration is to quantitatively relate measurements 
made using one measurement system to those of another 
measurement system. This is done so that measurements can 
be compared in common units or to tie results from a relative 
measurement method to absolute units. 

Optimization Optimization is performed to determine the values of process 
inputs that should be used to obtain the desired process 
output. 

 
Typical optimization goals might be to maximize the yield of a 
process, to minimize the processing time required to fabricate 
a product, or to hit a target product specification with 
minimum variation in order to maintain specified tolerances. 



INTRODUCTION TO MODELLING 

NOTES 10 

 

 

 
 

 

What are some of the different statistical 
methods for model building? 

Selecting an 
Appropriate 
Stat Method for 
Modeling 

In order to build a statistical model, we need to be very careful 
in selecting the method. 

 
There are more general approaches and more competing 
techniques available for model building. There is often more 
than one statistical tool that can be effectively applied to a 
given modeling application. 

 
The large menu of methods applicable to modeling problems 
means that there is both more opportunity for effective and 
efficient solutions and more potential to spend time doing 
different analyses, comparing different solutions and mastering 
the use of different tools. 

 
In the process of developing the model we will often come 
across situations where we build a first basic model and then 
run the model, perform calculations and try to improvise. 

 
Every model you run tells you a story. Stop and listen to it. 
Look at the coefficients. Look at R-squared. Did it change? 
How much do coefficients change from a model with control 
variables to one without? 
When you pause to do this, you can make better decisions on 
the model to run next. 

 
Now we discuss some of the most popular and 
well-established statistical techniques that are useful for 
different model building situations 
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Modelling 
methods that we 
will discuss 

1. Linear Least Squares Regression 
 

2. Nonlinear Least Squares Regression 
 

3. Weighted Least Squares Regression 

1] Linear Least 
Squares 
Regression 

Least squares regression method is by far the most widely used 
modelling method. 

 
The least squares method is a statistical procedure to find the 
best fit for a set of data points by minimizing the sum of the 
offsets or residuals of points from the plotted curve. 
Least squares regression is used to predict the behavior of 
dependent variables. 

 
This method of regression analysis begins with a set of data 
points to be plotted on an x- and y-axis graph. An analyst 
using the least squares method will generate a line of best fit 
that explains the potential relationship between independent 
and dependent variables. 

 
Linear least square regression equation example; 

 
 

 

Linear least squares regression also gets its name from the way 
the estimates of the unknown parameters are computed – using 
the “method of least squares”. In this method the unknown 
parameters are estimated by minimizing the sum of 
the squared deviations between the data and the model. 



INTRODUCTION TO MODELLING 

NOTES 12 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Example of the Least Squares Method 
An example of the least squares method is an analyst who 
wishes to test the relationship between a company’s stock 
returns, and the returns of the index for which the stock is a 
component. 

 
In this example, the analyst seeks to test the dependence of the 
stock returns on the index returns. To achieve this, all of the 
returns are plotted on a chart. The index returns are then 
designated as the independent variable, and the stock returns 
are the dependent variable. 

 
The line of best fit provides the analyst with coefficients 
explaining the level of dependence. 

2] Nonlinear Least 
Squares 
Regression 

Nonlinear least squares regression extends linear least squares 
regression for use with a much larger and more general class of 
functions. Almost any function that can be written in closed 
form can be incorporated in a nonlinear regression model. 

 
Nonlinear regression is a regression in which the dependent 
variables are modelled as a non-linear function of model 
parameters and one or more independent variables. 
The reason that these models are called nonlinear regression is 
because the relationships between the dependent and 
independent parameters are not linear. 

 
As the name suggests, a nonlinear model is any model of the 
basic form, 

Y = f(x⃗ ;β⃗ )+ε, 

in which 
i) the functional part of the model is not linear with respect to 
the unknown parameters, β0,β1,…, and 
ii) the method of least squares is used to estimate the values of 
the unknown parameters. 
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Advantages 

Disadvantages 

Some examples of nonlinear models include: 
a) f(x;β⃗ )= (β0+β1x)/(1+β2x) 
b) f(x;β⃗ )=β1xβ2 

The biggest advantage of nonlinear regression over other 
techniques is the broad range of functions that can be fit. 

 
The major cost of moving to nonlinear least squares from 
simpler modelling techniques like linear least squares is the 
need to use iterative optimization procedures to compute the 
parameter estimates. 

3] Weighted Least 
Squares 
Regression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advantages 

One of the common assumptions underlying most process 
modelling methods, including linear and nonlinear least 
squares regression, is that each data point provides equally 
precise information about the deterministic part of the total 
process variation. 

 
Weighted Least Squares is an extension of simple regression. 
Non-negative constants (weights) are attached to data points. 
The values scattered close to each other in the centre certainly 
reflect more information and hence should be given more 
weightage than those scattered far away from each other and 
those which are outliers. 

 
It is used when any of the following are true: 
1. Your data violates the assumption of homoscedasticity. 
2. You want to concentrate on certain areas 
3. You have any other situation where data points should not 
be treated equally. 

 
Weighted least squares has several advantages over other 
methods, including: 
It’s well suited to extracting maximum information from small 
data sets. 

 
It is the only method that can be used for data points of 
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Disadvantages 

varying quality. 
 

It requires that you know exactly what the weights are. 
Estimating weights can have unpredictable results, especially 
when dealing with small samples. 
Therefore, the technique should only be used when your weight 
estimates are fairly precise. In practice, precision of weight 
estimates usually isn’t possible. 

 
Sensitivity to outlier is a problem. A rogue outlier given an 
inappropriate weight could dramatically skew your results. 


