INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

Mr. Prakhar Mody

Class: MSc
Subject : Application of IT- Basics and Advance Excel

Chapter: Unit 2 Chapter 2
Chapter Name: Object, Methods & Properties

Object Model of VBA

> VBA is (loosely) based on Object Oriented Programming. At a basic level, this (roughly) means that the VBA
paradigm mostly relies on working with (or manipulates) objects.

» As a consequence of the above, if you want to really master Excel macros and Visual Basic for Applications,
you must have a good understanding of the following 3 topics:

1. Objects.
2. How to manipulate VBA objects.
3. Excel's VBA object model.

» An object represents an element of an application, such as a worksheet, a cell, a chart, a form, or a report.

In Visual Basic code, you must identify an object before you can apply one of the object's methods or
change the value of one of its properties.

» The object model is a large hierarchy of all the objects used in VBA. All applications like Excel, Access, Word
or PowerPoint, which use VBA, have their own object model

Excel Object Model Hierarchy

The image below shows a comprehensive excel object model hierarchy(most used

objects)
Application
| l
Addins Windows Workbooks
|] | |
Charts Mames VBProjects Windows Worksheets
| | | I I]
ChartObjects Comment Hyperlink MName PageSetup FivotTables Range

How to call Objects in VBA?

1. Let’s say if you want to refer to a workbook the
code you have written should be like this:

2. What you have written s, you refer to the Excel
application first and you have used “Workbooks”
which s further a part of the Application object.

3. Let’s go a bit further. Let’s refer to a specific cell in
the worksheet “Sheet1” and the code for this

would be:

Note: Using the Application object is optional. You can also omit

objects if you are already working in them.

@ Microsoft Visual Basic for Applications - PERSONALXLSB - [Module2 (Code)]

w%ﬁile Edit View Insert Format Debug Run Tools Add-Ins Window Help

v, |(General)

] Sub myMacro()
Application.Workbooks ("Book1.xlsx")

End Sub

i Microsoft Visual Basic for Applications - PERSONALXLSB - [Module2 (Code]]

4

b

@Eile Edit View Insert Format Debug Run Tools Add-Ins Window Help

|(General v | |myMacro
Sub myMacro()
Application.Workbooks("Book.x1sx") Worksheets("Sheet1").Range ("A1")
End Sub

How to call Objects in VBA?

If the range has a name, we can refer to the range by its name (also in quotes):
Range("PricelList")

Unless we tell Excel otherwise by qualifying the range reference, it assumes that we're referring
to a range on the active worksheet.

If anything other than a worksheet (s active (such as a chart sheet), the range reference fails, and
the macro displays an error message and halts.

Worksheets("Sheet1").Range("A1:C5") - Another sheet

Workbooks("Budget.xlsx").Worksheets("Sheet1").Range("A1:C5") — Sheet on another
workbook

Range("3:3") — Entire row
Range("D:D") — Entire column
Range("A1:B8,D9:G16") — Non-contiguous

» A Property is an attribute of an
object, e.g. the colour of a car, the
name of a worksheet.
Object.Property = Value

» A Method (s an activity that an
object can be told to do, e.qg.
accelerate the car, select a cell,
insert a worksheet, delete a
worksheet.

Object.Method

Object

Objects, Properties & Methods

Sub January()

—

Range ("Al") .Select

g

(:Worksheets ("Sheetlf})i . Select:)«— Method

ActiveCell.Value ¥ "January"

Range ("A2”) .Select
ActiveCell.Value = 100

End Sub

Property

Properties

1. The Value Property:

» The Value property represents the value contained in a cell

» We can read the Value property only for a single-cell
MsgBox Worksheets("Sheet1").Range("A1").Value

» We can, however, change the Value property for a range of any size.
Worksheets("Sheet1").Range("A1:C3").Value = 123

2. The Font Property:

> The Font property returns a Font object.

> A Font object has many accessible properties.

» To change some aspect of a range’s font, we must first access the range’s Font

object and then manipulate the properties of that object.

Range("A1").Font.Bold = True

Properties

3. The NumberFormat property:

> It represents the number format (expressed as a text string) of the Range object.

» This (s a read-write property, so VBA code can either examine the number
format or change tt.

> The following statement changes the number format of column A to a
percentage with two decimal places:

Columns("A:A").NumberFormat = "0.00%"

4. The Formula Property

» The Formula property represents the formula in a cell.

» The following statement enters a SUM formula into cell AT13:
Range("A13").Formula = "=SUM(A1:A12)"

> The formula is a text string and s enclosed in quotation marks. Also the formula
begins with an equal sign, as all formulas do.

Methods

1. The Copy and Paste method

> The Copy method is applicable to the Range object, but the Paste method
applies to the Worksheet object.

» We copy to a range and paste it to a worksheet.
Sub CopyRange()
Range("A1:A12").Select
Selection.Copy
Range("C1").Select
ActiveSheet.Paste
End Sub
» The following procedure accomplishes the same task as the preceding
example by using a single statement:
Range("A1:A12").Copy Range("CT")

Methods

2. The Clear method:

> Clear method - deletes the contents of a range, plus all the cell formatting.
Columns("D:D").Clear

» The above code clears everything in column D

» ClearContents method - deletes the contents of the range but leaves the formatting intact.

» ClearFormats method - deletes the formatting in the range but not the cell contents.

3. The Delete method

> When we delete a range, Excel shifts the remaining cells around to fill up the range deleted.
Rows("6:6").Delete

> When we delete a range that’s not a complete row or column, Excel needs to know how to
shift the cells.

» The following statement deletes a range and then fills the resulting gap by shifting the
other cells to the left

Range("C6:C10").Delete xlToLeft

Variables & Constants

> A variable is a placeholder, which stores data, i.e. a storage area in memory. It can be
recalled, reassigned or fixed throughout a procedure, function or during the lifetime of a
module being executed.

» For example: Result = Activecell.Value
Where Result is the variable name which is assigned the value in the Activecell.

» Declaring a variable allows you to state the names of the variables you are going to use and
also identify what type of data the variable is going to contain.

» For example, if Result = 10, then the variable Result could be declared as being an Integer
> In VBA, Variables are either declared Implicitly or Explicitly.
> Implicitly: Below is an example of a variable declared Implicitly.

label="name”

volume=4

> Explicitly: Below is an example of variable declared Explicitly. You can use “Dim” keyword in
syntax

Dim Num As Integer

Variable Types (Non-Numeric)

Data Type

String (fixed Length)
String (Variable Length]
Boolean

Date

Object
Variant(numeric)

Variant(text)

Bytes Used
Length of string
Length + 10 bytes
2 bytes

8 bytes

4 bytes

16 bytes

Length+22 bytes

Range of Values

1 to 65,400 characters

0 to 2 billion characters

True or False

January 1, 100 to December 31, 9399
Any embedded object

Any value as large as Double

Same as variable-length string

Variable Types (Numeric)

Type
Byte
Integer

Long

Single

Double

Currency

Decimal

Storage
1 byte
2 bytes

4 bytes

4 bytes

8 bytes

8 bytes

12
bytes

Range of Values

0 to 255

-32,768 to 32,767
-2,147,483,648 to 2,147,483,648

-3.402823E+38 to -1.401298E-45 for negative values 1.401298E-45 to 3.402823E+38 for
positive values.

-1.79769313486232e+308 to -4.94065645841247TE-324 for negative values
4.94065645841247TE-324 to 1.79769313486232e+308 for positive values.

-922 337,203,685,477.5808 to 922,337,203,685,477.5807

+/-79,228,162,514,264,337,593,543,950,335 if no decimal is use +/-
7.9228162514264337593543950335 (28 decimal places)

Constants

» Constants are values that do not change. They prevent you from having to
repeatedly type in large pieces of text.

> The following example declares the constant MYFULLNAME to equal "Ben Beitler".

Therefore, wherever MYFULLNAME has been used, the value that will be returned
will be "Ben Beitler".

Bub ConstantTest ()
Const MYFULLMNAME As String = "Ben Beitler”
ActiveCell . Value = MYFULLMHAME
ActiveCell .EntireColumn.AutoFit

End Sub

Object Variables

» An Object Variable is a variable that represents an entire object, such as a Range or a Worksheet.

> You use this type of variable for creating a new instance of an object which will be necessary
should you wish to communicate with other applications namely Microsoft Word, PowerPoint or
any other external library.

» Object Variables, similar to normal variables, are declared with the Dim statement, for example:
Dim mycell As Range

> To assign an object expression to an object variable, use the Set keyword. For example:
Set ObjectVariable = ObjectExpression
Set MyCell = Worksheets("Sheet1").Range("A1")

Understanding Scope and Visibility

> Scope refers to the availability of a variable, constant, or procedure for use by
another procedure.

> There are three scoping levels: procedure-level, private module-level, and public
module-level.

» You determine the scope of a variable when you declare it. It's a good idea to
declare all variables explicitly to avoid naming-conflict errors between variables

with different scopes.

Procedure Level Scope

» A variable or constant defined within a procedure is not visible outside that procedure.
Only the procedure that contains the variable declaration can use it

> In the following example, the first procedure displays a message box that contains a
string. The second procedure displays a blank message box because the variable is local
to the first procedure.

Sub Localvariable()
Dim strMsg As String

strMsg = "This wvariable can't be used outside this procedure.”
MsgBox strMsg
End Sub

Sub OutsideScope()
MsgBox strMsg
End Sub

Private Module-Level Scope

» You can define module-level variables and constants in the Declarations section of a module.

» Module-level variables can be either public or private. Public variables are available to all

procedures in all modules in a project; private variables are available only to procedures in
that module.

» By default, variables declared with the Dim statement in the Declarations section are scoped
as private. However, by preceding the variable with the Private keyword, the scope (s obvious
(n your code.

> In the following example, the string variable strMsg (s available to any procedures defined in

the module.
" Add following to Declarations section of module.

Private strMsg As String

Sub InitializePrivateVariable()
strMsg = "This variable can't be used outside this module.”
End Sub

Sub UsePrivateVariable()
MsgBox strMsg
End Sub

Public Module-Level Scope

> If you declare a module-level variable as public, it's available to all procedures in the
project. In the following example, the string variable can be used by any procedure in
any module in the project.

> All procedures are public by default

' Include in Declarations section of module.
Public strMsg As String

