INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

Mr. Prakhar Mody

Class: MSc
Subject : Application of IT- Basics and Advance Excel

Chapter: Unit 2 Chapter 3
Chapter Name: Error Trapping

Error Handling

» No matter how thorough you are when writing code, errors can and will happen.

> There are steps that developers can take to help reduce unwanted errors and this is considered just
as important as the actual process of the procedure.

» Before understanding and applying error-handling routines, planning to avoid errors should be
undertaken.

« Design the procedure’s process electronically or on paper — flow chart and paper test.
« Using the Option Explicit statement — declaring your variables officially.

* Creating smaller portions of code — snippets to be called and re-used

« Syntax checking — user defined commands and functions.

« Comments — remarking your code at various points.

« Testing application — functional and usability.

Types of Errors

1.

>

Syntax Errors:

While writing VBA code you need to follow a
particular Syntax and when you skip it or don't write
it in the way it should be you can face SYNTAX error
(also called Language error). It's like typos that you
do while writing your codes.

Well, VBA helps you by pointing out these errors by
showing an error message. You just need to make
sure you have "Auto Syntax Check” activated in your
VB editor.

Go to the Tool » Options and make sure to tick the
"Auto Syntax Check”. With this, whenever you make a
SYNTAX error, VBA will show an error message.

Editor \ Editor Format\ General l Dacking l

Code Settings /
v Auto Syntax Check v Auto Indent

[¥ Require Variable Declaration
s Tab Width: [4
[v Auto List Members

¥ Auto Quick Info
[v Auto Data Tips

Window Settings
¥ Drag-and-Drop Text Editing
v Default to Full Module View

¥ Procedure Separator

OK

>

Types of Errors

2.

Compile Errors:

It comes when you write code to perform an

#

aCtIVIty’ bUt that aCtIVIty Is not Valld or can't lﬁg File Edit View Insert Format Debug Run Tools Add-lns Window Help

be performed by VBA. %
some examples of compile errors:
Using For without Next (For Next).
Select without End Select (Select Case).

Not Declaring a Variable when you have

"Option Explicit” enabled.

Calling a Sub/Function that does not exist.

(General)

Sub Square_Root()

If 1 + 1 = 2 Then
MsgBox "Yes"

End Sub

v | |Square_Root

Microsoft Visual Basic for Applications X

. Compile error:

Block If without End If

Types of Errors

3. Runtime Errors

» A runtime error occurs at the time of executing the code.

» When a runtime error occurs while running code, it
stops the code and shows you the error dialog box and
that error box talks about the nature of the error you
have.

> Let’s say you have written a code that opens a workbook
from the location which you have specified but now that
workbook is relocated or deleted by someone.

> So, when you run the code, VBA will show you a

runtime error as it can't find that file on that location.

\(General) v | |vba_open_

Sub vba_open_workbook ()

Workbooks.Open "C:\Users\Dell\Desktop\myFile.x1lsx"

End Sub

Microsoft Visual Basic

Run-time error '1004':

Sorry, we couldn't find C:\Users\Dell\Desktop\myfFile.xIsx. Is it possible
it was moved, renamed or deleted?

Types of Errors

4. Logical Error

> It's not an error but a mistake while writing code. These types of errors
sometimes can give you nuts while finding them and correcting them.

> Let’s say you write code and while declaring a variable you used the wrong
data type, or you have used the wrong calculation steps. In this case, your
code will work fine, and you won't find this error easily.

> The best way to deal with this kind of problem (s to run each line of code
one by one. To do this you can use F8.

Error Handling

1. On Error Resume Next:

» On Error Resume Next tells VBA to skip any lines of
code containing errors and proceed to the next line.

» A great time to use On Error Resume Next is when
working with objects that may or may not exist.

» For example, you want to write some code that will
delete a shape, but if you run the code when the
shape (s already deleted, VBA will throw an error.
Instead you can use On Error Resume Next to tell
VBA to delete the shape if it exists.

Note: On Error Resume Next does not fix an error, or otherwise resolve it. It
simply tells VBA to proceed as if the line of code containing the error did not
exist. Improper use of On Error Resume Next can result in unintended
consequences.

On Error Resume Next
ActiveSheet.Shapes("Start Button").Delete

On Error GoTo @

Error Handling

2. On Error GoTo 0:
» On Error GoTo 0 is VBA's default setting. You can restore this default setting by adding the

following line of code:

» When an error occurs with On Error GoTo 0, VBA will stop executing code and display its

standard error message box.
» Often you will add an On Error GoTo O after adding On Error Resume Next error handling.

Notice in the revious slide we added On Error GoTo 0. This was done to reset error
handling

>

Error Handling

3.

On Error GoTo LabelName:

Ferme Bandlss w5 s | SR
= Ol l X A" Wl oL =

On Error GoTo LabelName branches to the portion of ‘“EHETHZGT* .
the code with the label LabelName(‘LabelName’ -
must be a text string and not a value). oom nthay As lateger

intDay = "Monday"
MsgBox intDay

These commands are usually placed at the beginning
of the procedure and when the error occurs,

myHandler:
the macro will branch to another part of the O R e e o= . .
. . ption: & Err.Description
procedure and continue executing code or end, End Sub
depending on the instruction given.
Microsoft Excel X

myHandler is a user defined label (must not use
known keywords) which listens for any errors that
may occur. When an error (s detected, the procedure
Jumps to a bookmark of the same label with a colon (
;) (myHandler:) and executes from that point :
forward. o]

Error Number: 13
Description: Type mismatch

