INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES

What are VBA Workbook Events?

[l VBA workbook events are defined as an action performed by a user in Microsoft Excel that can

trigger the execution of a specified macro. For example, when a user opens a workbook in Excel,
the event “Workbook_Open” is triggered. Similarly, when the user saves the current workbook,
the event “Workbook_BeforeSave” is initiated. There are many such events that are built into

Excel VBA.

[l Users can create codes for specific workbook events, such that if the user has specified the code
for a particular event that has occurred, VBA will instantly execute the code. The code that is

executed when an event occurs is referred to as an event handler.

[' VBA workbook events allow users can create macros that are automatically executed by Excel
when a particular event occurs. They improve user experience, and they make it possible to add

interactivity to Excel workbooks.

Types of Events in Excel

1 Application level events

Application events occur to the Microsoft Office application itself, such as Excel. Examples

of application-level events include opening a new workbook, saving the current workbook,
or closing one or more of the open workbooks.
2. Workbook level events

Workbook events occur due to the user’s actions on the workbook itself. Examples of such

events include creating a new worksheet, opening a workbook, and printing the workbook.
3. Worksheet level events
Worksheet events are events that are triggered when a user performs an action on a

worksheet. Examples of worksheet level events include double-clicking on a cell,

right-clicking on a cell, changing a cell in the worksheet, changing the color of a worksheet,

etc.

Types of Events in Excel

4. UserForm level events

UserForm events are events that occur to the UserForm or an object (such as a button or cell) within

the UserForm. An example of a UserForm event is clicking a cell in the Userform.
5. Chart events

Chart events are events that occur on the chart sheet. A chart sheet is different from a worksheet,

and its work is to hold charts. Examples of chart events include resizing a chart and changing the

selection of a chart.

WorkBook Level Events

Follow the steps below to view the list of workbook events:

[’ Open the VBA window from the Developer tab.

[l Click on “ThisWorkbook” on the left-hand side below the Microsoft Excel Objects
to open the code window.

[’ On the Code window, select Workbook from the drop-down option on the left. It
will show the Workbook_Open code in the code window.

[l Click the right-hand drop-down to see the list of workbook events.

WorkBook Level Events

File Edt View [nset Format Debug Run Tools Add-Ins Window Help
H&E-Jd o a9 » n a K SFY @ un4conn
o3 @ P

= &5 VBAProject (Book1)

&) @3 Mirosoft Excel Objects

rrivate Sub Workbook Cpen()

8 End Sub
2 Module1

Examples

The following code will show a message “Welcome” whenever you open the workbook.

Private Sub Workbook Open() Microsoft Bxcel <

MsgBox "Welcome"
End Sub

..................................

Microsoft Excel X

Private Sub Workbook BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
MsgBox "The Workbook has Saved"
End Sub

The Workbook has Saved

OK

MsgBox

[l The MsgBox function displays a message box and waits for the user to click a button
and then an action is performed based on the button clicked by the user.
[l Syntax: MsgBox(prompt[,buttons]],title][,helpfile,context])

1. Prompt - A Required Parameter. A String that is displayed as a message in the dialog
box. The maximum length of prompt is approximately 1024 characters.

2. Buttons - An Optional Parameter. A Numeric expression that specifies the type of
buttons to display, the icon style to use, the identity of the default button, and the
modality of the message box. If left blank, the default value for buttons is O.

3. Title - An Optional Parameter. A String expression displayed in the title bar of the dialog
box. If the title is left blank, the application name is placed in the title bar.

4. Helpfile - An Optional Parameter. A String expression that identifies the Help file to use
for providing context-sensitive help for the dialog box.

5. Context - An Optional Parameter. A Numeric expression that identifies the Help context
number assigned by the Help author to the appropriate Help topic. If context is
provided, helpfile must also be provided.

Buttons in MsgBox

The Buttons parameter can take any of the following values —

» O vbOKOnly - Displays OK button only.

» 1vbOKCancel - Displays OK and Cancel buttons.

» 2 vbAbortRetrylgnore - Displays Abort, Retry, and Ignore buttons.

» 3 vbYesNoCancel - Displays Yes, No, and Cancel buttons.

» 4 vbYesNo - Displays Yes and No buttons.

» 5vbRetryCancel - Displays Retry and Cancel buttons.

» 16 vbCritical - Displays Critical Message icon.

» 32 vbQuestion - Displays Warning Query icon.

» 48 vbExclamation - Displays Warning Message icon.

» 64 vbinformation - Displays Information Message icon.

» O vbDefaultButton1 - First button is default.

» 256 vbDefaultButton2 - Second button is default.

» 512 vbDefaultButton3 - Third button is default.

» 768 vbDefaultButton4 - Fourth button is default.

» O vbApplicationModal Application modal - The current application will not work until the user responds to
the message box.

» 4096 vbSystemModal System modal - All applications will not work until the user responds to the
message box.

Return Values

The MsgBox function can return one of the following values which can be used to identify the
button the user has clicked in the message box.

1 - vbOK - OK was clicked

2 - vbCancel - Cancel was clicked
3 - vbAbort - Abort was clicked

4 - vbRetry - Retry was clicked

5 - vblgnore - Ignore was clicked
6 - vbYes - Yes was clicked

7 - vbNo - No was clicked

Example

Function MessageBox Demo()
'Message Box with just prompt message

MsgBox("Welcome")

'Message Box with title, yes no and cancel Butttons

int a = MsgBox("Do you like blue color?",3,"Choose options™)
' Assume that you press No Button
msgbox ("The Value of a is " & a)

End Function

Output

[Step 1 - The above Function can be executed either by
clicking the "Run” button on VBA Window or by calling the
function from Excel Worksheet as shown in the following
screenshot.

[Step 2 - A Simple Message box is displayed with a
message "Welcome" and an "OK" Button

[l Step 3 - After Clicking OK, yet another dialog box is

displayed with a message along with "yes, no, and cancel”

buttons.

[l Step 4 - After clicking the ‘No’ button, the value of that
button (7) is stored as an integer and displayed as a
message box to the user as shown in the following
screenshot. Using this value, it can be understood which
button the user has clicked.

Microsoft Excel

Welcome

Bl

OK

Choose options

Do you like blue color?

| Y. || No

| |

Cancel

Microsoft Excel

The Valueofais?

OK

InputBox

[l The InputBox function prompts the users to enter values. After entering the values, if the
user clicks the OK button or presses ENTER on the keyboard, the InputBox function will
return the text in the text box. If the user clicks the Cancel button, the function will return an
empty string ("").

Syntax: InputBox(promptl,titlel[,default]l,xpos]lyposlil, helpfile,context])

Prompt - A required parameter. A String that is displayed as a message in the dialog box.
The maximum length of prompt is approximately 1024 characters.

Title - An optional parameter. A String expression displayed in the title bar of the dialog
box. If the title is left blank, the application name is placed in the title bar.

Default - An optional parameter. A default text in the text box that the user would like to
be displayed.

XPos - An optional parameter. The position of X axis represents the prompt distance from
the left side of the screen horizontally. If left blank, the input box is horizontally centered.
YPos - An optional parameter. The position of Y axis represents the prompt distance from
the left side of the screen vertically. If left blank, the input box is vertically centered.

= = - = = RN

Example

Let us calculate the area of a rectangle by getting values from the user at run time with the
help of two input boxes (one for length and one for width).

Function findArea()
Dim Length As Double
Dim Width As Double

Length = InputBox("Enter Length ", "Enter a Number")
Width = InputBox("Enter Width", "Enter a Number")
findArea = Length * Width

End Function

Output

[

Step 1 - To execute the same, call using the
function name and press Enter as shown in the
following screenshot.

Step 2 - Upon execution, the First input box
(length) is displayed. Enter a value into the input
box.

Step 3 - After entering the first value, the second
input box (width) is displayed.

Step 4 - Upon entering the second number, click
the OK button. The area is displayed as shown in
the following screenshot.

Enter Value

Enter Length

0

dif’

7

Enter Value

Enter Width

|

=

1
3

D

Calculate Area

