

Subject: Numerical Methods

Matrices

Matrix

- A set of numbers, arranged in rows and columns so as to forma a rectangular array
- The numbers are called the elements, or entries, of the matrix.
- Example:

$$\begin{bmatrix} 6 & 4 & 24 \\ 1 & -9 & 8 \end{bmatrix}$$

This matrix has 2 rows and 3 columns. It is a 2x3 matrix.

1. Row matrix: A row matrix has only one row

2. Column matrix: A column matrix has only one column.

3. **Square matrix:** A square matrix has an equal number of rows and columns

E.g.
$$\begin{bmatrix} 1 & 2 & -2 \\ 8 & 2 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$
 (A 3x3 square matrix)

4. Diagonal matrix: A diagonal matrix has non-zero diagonal elements and all other elements are zero

E.g.
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

5. Scalar Matrix: A scalar matrix has all main diagonal entries the same, with zero everywhere else:

E.g.
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

- 6. Triangular matrix:

a. Lower Triangular matrix is a matrix where all entries above the main diagonal are zero E.g.
$$\begin{bmatrix} 4 & 0 & 0 \\ -2 & 3 & 0 \\ 5 & 1 & 2 \end{bmatrix}$$

b. Upper Triangular matrix is a matrix where all entries below the main

diagonal are zero E.g. $\begin{bmatrix} 4 & 2 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & 2 \end{bmatrix}$

- 7. Null matrix: A null matrix has all of its elements as zero.
- 8. Identity Matrix: An identity matrix is a square matrix that has 1s on the main diagonal and 0s everywhere else.
- Its symbol is I
- It is the matrix equivalent of the number 1; multiplying a matrix with the identity matrix keeps the original matrix unchanged:

$$A \times I = A I \times A = A I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This is a 3 x 3 identity matrix

Matrix Notation

- A matrix is usually denoted by a capital letter (such as A or B)
- Each entry (or "element") is shown by a lower case letter with a "subscript" of row,column
- Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Matrix Addition

- To add two matrices, add the numbers in the matching positions
- The two matrices must have the same size, i.e. the rows must match in size and the columns must also match in size.
- Example

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 3+4 & 8+0 \\ 4+1 & 6-9 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 5 & -3 \end{bmatrix}$$

Matrix Addition & Subtraction

- For matrix **addition or subtraction**, the two matrices must have the same size, i.e. the rows must match in size and the columns must also match in size.
- To **add** two matrices, add the numbers in the matching positions
- Example

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 3+4 & 8+0 \\ 4+1 & 6-9 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 5 & -3 \end{bmatrix}$$

- To subtract two matrices: subtract the numbers in the matching positions: subtracting is actually defined as the addition of a negative matrix: A + (-B).
- Example

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 3 - 4 & 8 - 0 \\ 4 - 1 & 6 - (-9) \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 3 & 15 \end{bmatrix}$$

Matrix Transpose

- To "transpose" a matrix, swap the rows and columns.
- We put a "T" in the top right-hand corner to mean transpose
- Example

$$A = \begin{bmatrix} 6 & 4 & 24 \\ 1 & -9 & 8 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 6 & 1 \\ 4 & 19 \\ 24 & 8 \end{bmatrix}$$

An square matrix A is **symmetric** provided $A^T = A$

Multiplication by a Constant

- We can multiply a matrix by a constant
- We call the constant a scalar, so officially this is called "scalar multiplication".
- Example:

$$2 \times \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 2 \times 4 & 2 \times 0 \\ 2 \times 1 & 2 \times -9 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 2 & -18 \end{bmatrix}$$

Matrix Multiplication

- Matrix Multiplication is an operation that depends on the order of matrices.
- The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix. $A \times B$ is defined only if, no of columns in A=no of rows in B
- And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
- If A is a $m \times n$ matrix, B is a $n \times p$ matrix, then $A \times B$ is a $m \times p$ matrix
- Matrix multiplication is not commutative. i.e. when we change the order of multiplication, the answer changes.

$$AB \neq BA$$

Matrix Multiplication

- Matrix Multiplication is row by column
- If A is a 2 \times 3 matrix, B is a 3 \times 2 matrix, then C is a 2 \times 2 matrix

$$c_{ik} = \sum_{j=1}^{3} a_{ij} b_{jk}$$

So,

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$$

$$A \times B = \begin{bmatrix} 1 \times 7 + 2 \times 9 + 3 \times 11 & 1 \times 8 + 2 \times 10 + 3 \times 12 \\ 4 \times 7 + 5 \times 9 + 6 \times 11 & 4 \times 8 + 5 \times 10 + 6 \times 12 \end{bmatrix}$$

$$= \begin{bmatrix} 7 + 18 + 33 & 8 + 20 + 36 \\ 28 + 45 + 66 & 32 + 50 + 72 \end{bmatrix}$$

$$= \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}$$

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be $m \times n$ matrices and c and d be real numbers.

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$c(A+B) = cA + cB$$

4.
$$(c+d)A = cA + dA$$

5.
$$c(dA) = (cd)A$$

- 6. The $m \times n$ matrix with all zero entries, denoted by **0**, is such that $A + \mathbf{0} = \mathbf{0} + A = A$.
- 7. For any matrix A, the matrix -A, whose components are the negative of each component of A, is such that $A + (-A) = (-A) + A = \mathbf{0}$

Properties of Matrix Multiplication

Let A, B, and C be matrices with sizes so that the given expressions are all defined, and let c be a real numbers.

1.
$$A(BC) = (AB)C$$

2.
$$c(AB) = (cA)B = A(cB)$$

3.
$$A(B + C) = AB + AC$$

4.
$$(B + C)A = BA + CA$$

Inverse of a Matrix

- The Inverse of a Matrix is the same idea as the reciprocal of a number but we write it A^{-1}
- When we multiply a matrix by its inverse we get the Identity Matrix (which is like "1" for matrices):

$$A \times A^{-1} = I$$

- Same thing when the inverse comes first: $A^{-1} \times A = I$
- **Definition**: The inverse of A is A^{-1} only when:

$$A \times A^{-1} = A^{-1} \times A = I$$

Sometimes there is no inverse at all.

Why we need an Inverse

With matrices we don't divide as there is no concept of dividing by a matrix. But we can multiply by an inverse, which achieves the same thing. Say we want to find matrix X, and we know matrix A and B:

$$XA = B$$

It would be nice to divide both sides by A (to get X = B/A), but remember we can't divide. But what if we multiply both sides by A^{-1} ?

$$XAA^{-1} = BA^{-1}$$

And we know that $AA^{-1} = I$, so:

$$XI = BA^{-1}$$

We can remove I (for the same reason we can remove "1" from 1x = ab for numbers):

$$X = BA^{-1}$$

And we have our answer (assuming we can calculate A^{-1}).

Note: Order of multiplication is important.

The Inverse May not Exist

- The inverse of a matrix, if it exists, is unique
- When the inverse of a matrix A exists, we call A Invertible.
 Otherwise the matrix is called noninvertible.
- For a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, A is invertible if and only if $ad bc \neq 0$

Example

Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

In order for a 2 × 2 matrix $B = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$ to be an inverse of A, B must satisfy

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} x_1 + x_3 & x_2 + x_4 \\ x_1 + 2x_3 & 2x_2 + 2x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The matrix equation is equivalent to the system

$$x_1$$
 + x_3 = 1
 x_2 + x_4 = 0
 x_1 + $2x_3$ = 0
 x_2 + $2x_4$ = 1

Thus the solution is $x_1 = 2$, $x_2 = -1$, $x_3 = -1$, $x_4 = 1$, and the inverse matrix is

$$\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Example 2

Find the inverse of the matrix: $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

To find the inverse we place the identity matrix on the right to form the 3×6 matrix

$$\begin{bmatrix} 1 & 1 & -2 & | & 1 & 0 & 0 \\ -1 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Now use row operations to reduce the matrix on the left to the identity matrix while performing the same operations to the matrix on the right.

The final result is $\begin{bmatrix} 1 & 0 & 0 & | & 2 & 1 & 4 \\ 0 & 1 & 0 & | & 1 & 1 & 2 \\ 0 & 0 & 1 & | & 1 & 1 & 3 \end{bmatrix}$

So the inverse matrix is $A^{-1} = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{bmatrix}$

System of Linear Equations

• A system of m linear equations in n variables, or a linear system is a collection of equations of the form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

• This is also referred to as an $m \times n$ linear system

Example

$$-2x_1 + 3x_2 + x_3 - x_4 = -2$$

$$x_1 + x_3 - 4x_4 = 1$$

$$3x_1 - x_2 - x_4 = 3$$

Is a linear system of three equations in four variables, or a 3×4 linear system.

Solution to a System of Linear Equations

- A solution to a linear system with n variables is an ordered sequence $(s_1, s_2, ..., s_n)$ such that each equation is satisfied for $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$.
- The general solution or solution set is the set of all possible solutions.
- A $m \times n$ linear system has either
 - a unique solution (consistent system),
 - infinitely many solutions (consistent system), or
 - no solution (inconsistent system)

Triangular Form of a Linear System

- An $m \times n$ linear system is in triangular form provided that the coefficients $a_{ij} = 0$ whenever i > j.
- In this case we refer to the linear system as a triangular system.
- Example:

$$x_1 - 2x_2 + x_3 = -1$$
$$x_2 - 3x_3 = 5$$
$$x_3 = 2$$

- When a linear system is in triangular form, then the solution set can be obtained using **back substitution**.
- In the above triangular system, we can see that $x_3 = 2$. Substituting this in the second equation, we obtain $x_2 3(2) = 5$, so $x_2 = 11$. Finally, using these values in the first equation, we have $x_1 2(11) + 2 = -1$, so $x_1 = 19$.
- The solution is written as (19,11,2)

Equivalent Systems

Two linear systems are equivalent if they have the same solutions.

Performing any of the following operations on a linear system produces an equivalent linear system:

- 1. Interchanging any two equations
- 2. Multiplying any equation by a nonzero constant
- 3. Adding a multiple of one equation to another.

Example

Solve

$$x + y + z = 4$$

$$-x - y + z = -2$$

$$2x - y + 2z = 2$$

To convert the system into an equivalent triangular system, we first eliminate the variable x in the second and third equations to obtain

$$x + y + z = 4$$

 $-x - y + z = -2$
 $2x - y + 2z = 2$
 $E_1 + E_2 \rightarrow E_2$
 $-2E_1 + E_3 \rightarrow E_3$
 $x + y + z = 4$
 $2z = 2$
 $-3y = -6$

Interchanging the second and third equations gives the triangular linear system

$$x + y + z = 4$$

$$2z = 2$$

$$-3y = -6$$

$$x + y + z = 4$$

$$-3y = -6$$

$$2z = 2$$

Using back substitution, we have z = 1, y = 2, and x = 4 - y - z = 1.

Augmented Matrix

- Solving a linear system, by elimination method requires only the coefficients of the variables and the constants on the right-hand side
- The coefficients and the constants can be recorded by using columns as placeholders for variables.

- This matrix is called the **augmented matrix** of the linear system
- The augmented matrix with the last column deleted is called the coefficient matrix

Example

Linear System

$$x + y - z = 1$$
$$2x - y + z = -1$$
$$-x - y + 3z = 2$$

Using the operations $-2E_1 + E_2 \rightarrow E_2$ and $E_1 + E_3 \rightarrow E_3$, we obtain the equivalent triangular system:

$$x + y - z = 1$$
$$-3y + 3z = -3$$
$$2z = 3$$

Corresponding Augmented Matrix

$$\begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 2 & -1 & 1 & | & -1 \\ -1 & -1 & 3 & | & 2 \end{bmatrix}$$

Using the operations $-2R_1 + R_2 \rightarrow R_2$ and $R_1 + R_3 \rightarrow R_3$, we obtain the equivalent triangular system:

$$\begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & -3 & 3 & | & -3 \\ 0 & 0 & 2 & | & 3 \end{bmatrix}$$

Operations on Augmented Matrix

- Any of the following operations performed on an augmented matrix, corresponding to a linear system, produces an augmented matrix corresponding to an equivalent linear system
- 1. Interchanging any two rows
- 2. Multiplying any row by a nonzero constant
- 3. Adding a multiple of one row to another

Solving Linear Systems with Augmented Matrix

- 1. Write the augmented matrix of the linear system
- 2. Use row operations to reduce the augmented matrix to triangular form
- 3. Interpret the final matrix as a linear system (which is equivalent to the original)
- 4. Use back substitution to obtain the solution

Example

Write the augmented matrix and solve the linear system

$$x - 6y - 4z = -5$$

$$2x - 10y - 9z = -4$$

$$-x + 6y + 5z = 3$$

Example- solution

To solve this system, we write augmented matrix:

$$\begin{bmatrix} 1 & -6 & -4 & | & -5 \\ 2 & -10 & -9 & | & -4 \\ -1 & 6 & 5 & | & 3 \end{bmatrix}$$

The augmented matrix is reduced to triangular form as follows:

$$\begin{bmatrix} 1 & -6 & -4 & | & -5 \\ 2 & -10 & -9 & | & -4 \\ -1 & 6 & 5 & | & 3 \end{bmatrix} \qquad \begin{array}{c} -2R_1 + R_2 \to R_2 \\ R_1 + R_3 \to R_3 \end{array} \qquad \begin{bmatrix} 1 & -6 & -4 & | & -5 \\ 0 & 2 & -1 & | & 6 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}$$

$$-2R_1 + R_2 \to R_2$$
$$R_1 + R_3 \to R_3$$

$$\begin{bmatrix} 1 & -6 & -4 & | & -5 \\ 0 & 2 & -1 & | & 6 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}$$

The equivalent triangular linear system is:

$$x - 6y - 4 = -5$$
$$2y - z = 6$$
$$z = -2$$

Which has the solution x = -1, y = 2, and z = -2

Matrix Equations -1

Consider the linear system

$$x - 6y - 4z = -5$$
$$2x - 10y - 9z = -4$$
$$-x + 6y + 5z = 3$$

The matrix of coefficients is given by

$$A = \begin{bmatrix} 1 & -6 & -4 \\ 2 & -10 & -4 \\ -1 & 6 & 5 \end{bmatrix}$$

Let **x** and **b** be the vectors

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -5 \\ -4 \\ 3 \end{bmatrix}$$

Thus the original system can be written as

$$A\mathbf{x} = \mathbf{b}$$

This is the **matrix form** of the linear system and **x** is the vector form of the solution

Matrix Equations - 2

If A is invertible, we have

$$A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

Since matrix multiplication is associative: $(A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$

Therefore

$$\mathbf{x} = A^{-1}b$$

$$A^{-1} = \begin{bmatrix} 2 & 3 & 7 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix}$$

Therefore, the solution to the linear system in vector form is given by

$$x = A^{-1}b = \begin{bmatrix} 2 & 3 & 7 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -5 \\ -4 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix}$$

That is x = -1, y = 2 and z = -2

Matrix Equations - 2

If A is invertible, we have

$$A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

Since matrix multiplication is associative: $(A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$

Therefore

$$\mathbf{x} = A^{-1}b$$

$$A^{-1} = \begin{bmatrix} 2 & 3 & 7 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix}$$

Therefore, the solution to the linear system in vector form is given by

$$x = A^{-1}b = \begin{bmatrix} 2 & 3 & 7 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -5 \\ -4 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix}$$

That is x = -1, y = 2 and z = -2