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Moment Generating Functions

A moment generating function (MGF) can be used to generate moments (about the origin) of the
distribution of a random variable (discrete or continuous). Using MGF will simplify many calculations.

Definition: The MGF — written as M,.(t), for a random variable X is given by,

M, (t) = E[e(tx)]

for all values of t for which the expectations exist.
To find M, (t)

If Xis discrete then, M, (t) = )., e P(X = x)

If X is continuous then, M,.(t) = fe(tx) f(x)dx



Finding Moments through
" Derivatives

The method is to differentiate the MGF with respect to t and then set t = O, the rth derivative giving the rth
moment about the origin.

M’y (t) = E[Xe'X], since My (t) = E[e**] and %e”‘ = XeX,
= M4 (0) = E[Xe°] = E[X]

Similarly for higher orders moments.
My (6) = E(X?e™) = My (0) = E(X?)
My'(t) = E(X3e™) = My’ (0) = E(X3)

The formulae for the mean and variance are:
Mean = My (0) = E[X]
Var = My (0) - [Mx(0)]°



2.2

Finding Moments through Series
"~ expansion

Expanding the exponential function and taking expected values throughout (a procedure which is justifiable
for the distributions here) gives:

t? t3
My(t) =E(e™¥)= E(l +1:X+§X2 +§X3 + )
t? t3
= L+ tE[X] + 5 EIX*] + 5y ELXC] + -

from which it is seen that the r* moment of the distribution about the origin, E[XT], is obtainable as the

- th, : ,
coefficient of —in the power series expansion of the MGF.



2.3 Use of MGFs

I the distribution of a random variable X is known, in theory at least, all moments of the distribution
that exist can be calculated. If the moments are specified, then the distribution can be identified.

Without going deeply into mathematical rigour, it can in fact be said that if all moments of a random
variable exist (and if they satisfy a certain convergence condition) then the sequence of moments
uniquely determines the distribution of X.

Further, if a moment generating function has been found, then there is a unique distribution with that
MGCF. Thus an MCF can be recognised as the MCF of a particular distribution. (There is a one-to-one
correspondence between MCFs and distributions with MGFs).



2.3

Important examples - discrete
distributions

The MGFs for some of the distributions introduced earlier are found as follows.

Discrete Uniform: (e*/%)(1 — e*) /(1 — e*) for t=0

Binomial: (q + pet) ™

et

]k

Negative binomial: [1z—)qet

. t_
Poisson: e*(¢" ~1)



Important examples — continuous
distributions

The MGFs for some of the distributions introduced earlier are found as follows.

2.3

ebt_eat

t(b—a)

Continuous Uniform:

Gamma: (1 — %)_“ fort< A

If t > A, then the power in the exponential factor in the integral is positive and therefore the
answer is infinite. So, the MGF does not exist in this case.

chi-square: (1 — 2t)~7/2

1
Normal: e(“HEJZtZ)



Question

CT3 April 2005 Q3

Claim sizes in a certain insurance situation are modelled by a distribution with moment generating function
M(t) given by

Mo =(1-10H2

Show that E[X?] = 600 and find the value of E[X3].
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Question

Mo =1 -10H72

M) = (=2)(-10)(1-10H~3 =20(1 — 109~

M” () = (-60)(-10)(1-105)~* = 600(1-10¢)* Putting t =0 = E[X?*] =600
M"(f) = (=2400)(-10)(1-10£)~> = 24000(1-109)~> Putting t =0 = E[X°] = 24000

[OR use the power series expansion M(¢) = 1 + 20¢+ 600£%/2! + 24000£/3! + ...]
[OR use the result on £[X”] for a gamma(2,0.1) variable in the Yellow Book]
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Question

CT3 April 2007 Q6

Consider the discrete random variable X with probability function

4

x+1 7

f(x)= x=0,12,...

3

(i)  Show that the moment generating function of the distribution of X is given by
:  A/= |
My(@)=4(5-¢) ",

~

fore' < 5.

(i)  Determine E[X] using the moment generating function given in part (i).
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Solution
. =2

(i)  Mxy(t)=E[e"] i)  M(r)=4e(5- e’)

L& sarY Al (& 4 Mean is given by E(X) =M '(0)

~ = 51 J 52 |3

x=0 : x=0 \ 7
s E[X]=4¢" (5 e )_ -]
and for ' <5, ~ , 4
\-1 [OR, by expansion as a power series. |

M (1) =% 1 =4(5—e’)
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3 Cumulant Generating Functions

‘H The cumulant generating function, Cx(t) , of a random variable X is given by:
Cx(t) = In My(t)
and so M, (t) = e%®,

As a result, if Cx(t) is known it is easy to determine My (t).
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3.1 Finding Moments

If we differentiate Cx(t) = In My (t), we obtain:

M, ()
M, (t)

Cx(t) =
and:

My (OMx (1) — (Mx (1))?
Mg (6)

Cx () =
Now M,.(0) = 1 so:

Mx(0) _ E[X] _
M (0) 1

Cx(0) — E[X]

and:

My (0)My (0) — (Mx (0))*
My (0)
_ EIX*)(1) — (E[X])?

12
= var|[X] 15

Cx(0) =




Linear Functions

Suppose X has MGF My (t) and the distribution of a linear function Y = a + bXis of interest. The MGF
of Y, My(t) say, can be obtained from that of X as follows:

MY (t) - E[etY] - E[et(a+bX)] = e E[eth] = e MX (bt)
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Question

CS1 September 2021 Q7

Let X;, i=1, 2, ..., n be mdependent random variables, each following an exponential
distribution with parameter 5. We consider the random variable Y= }7_, X;

(1) Justify why My(¢), the moment generating function (MGF) of variable Y, is
given by

—n
My() = (1- /) 2]
Let Z be a random variable such that the MGF of Z is M, (¢) = / M(?).

(1)  Determine the value of 5 for which Z follows a chi-square distribution,
specifying the degrees of freedom of the chi-square distribution. [3]
[Total 5]
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Solution

(i)

Since X; are independent, we have that Y = };7' X; follows a gamma distribution with

parameters n and b
-n
So MGF is given by My (t) = (1 - t/b)

G
M) =@ = (1-1/,) "

The MGF of a chi-square distribution with n degrees of freedom
is (1 — 2t) /2

So M,(t) is the MGF of a chi-square distribution with n degrees of freedom
and b = 0.5

[1]
[1]

[72]
[72]
[1]

[1]
[Total 5]
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Summary

Moment Generating Functions

My(t) =E(e"”) =3, e"P(X =x) or [ e™f(x)dx
E(X) = Mx(0)

Var (X) = M (0) — (Mx(0))*

My(H) = 1+ tE(X) + S E) + S EQX) + -

Cumulant Generating Functions
Cx(t) = In My (t)

E(X) = Cx(0)

var(X) = C4 (0)

skew(X) = Cy'(0)
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Summary

Linear Transformations
IfY = aX + b then,
My(t) — eatMX(bt) and Cy(t) = at + Cx(bt)

The uniqueness property means that if two variables have the same MGF and CGF, then they have the
same distribution.
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