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Conditional Expectation 
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The conditional expectation of Y given X = x is the mean of the conditional distribution of Y given X = x .
This mean is denoted E[Y|X = x] , or just E[Y| x] .
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The Random Variable 
E[Y|X]
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2.1

The conditional expectation E[Y | X = x] = g(x) , say, is, in general, a function of x. It can be thought of as the 
observed value of a random variable g(X ) . The random variable g(X ) is denoted E[Y | X ] .

E[Y|X] is also referred to as the regression of Y on X.

E[Y | X ] , like any other function of X, has its own distribution, whose properties depend on those of the 
distribution of X itself.

 



The random variable var[Y | X ] and the “E[V 
]+ var[E]” result
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Question
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CT3 September 2015 Q7

X and Y are discrete random variables with joint distribution given below.

(i) Determine the conditional expectation E[Y|X = 1]. 

(ii) Determine the conditional expectation E[X|Y = y] for each value of y. 

(iii) Determine the expected value of X based on your conditional expectation
results from part (ii).
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Compound Distributions
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Compound Distributions
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Moments of Compound 
Distributions
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3.1

 



Question
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CT3 April 2015 Q3

Assume that in a large portfolio of insurance contracts the claim size is a normally
distributed random variable with expected value 1000. Also assume that the number
of claims is a random variable following a Poisson distribution with parameter
λ = 400.

(i) Calculate the expected value of the total claim amount from contracts in this
portfolio. 

(ii) Calculate a lower limit for the standard deviation of the total amount of claims
from contracts in this portfolio.



Solution
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Generating Function of Compound 
Distributions
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Question
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CT3 April 2010 Q9

• The number of claims, N, arising over a period of five years for a particular policy is assumed to follow a 
“Type 2” negative binomial distribution (as in the book of Formulae and Tables page 9)

• Each claim amount, X (in units of £1,000), is assumed to follow an exponential distribution with parameter λ 
independently of each other claim amount and of the number of claims.

Let S be the total of the claim amounts for the period of five years, in the case k = 2, p = 0.8 and λ = 2.

(i) Calculate the mean and the standard deviation of S based on the above assumptions.

Now assume that:
• N follows a Poisson distribution with parameter μ = 0.5, that is, with the same mean as N above;
• X follows a gamma distribution with parameters α = 2 and λ = 4, that is, with the same mean as X above.

(ii) Calculate the mean and the standard deviation of S based on these assumptions. 

(iii) Compare the two sets of answers in (i) and (ii) above. 
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