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Estimation

Estimation (or estimating) is the process of finding an estimate, or approximation, which is a value that is usable for
some purpose even if input data may be incomplete, uncertain, or unstable.

* The value is nonetheless usable because it is derived from the best information available.

« Typically, estimation involves "using the value of a statistic derived from a sample to estimate the value of a
corresponding population parameter”. The sample provides information that can be projected, through various
formal or informal processes, to determine a range most likely to describe the missing information.

* An estimate that turns out to be incorrect will be an overestimate if the estimate exceeded the actual result, and

an underestimate if the estimate fell short of the actual result.
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2 Method of Moments

« The basic principle is to equate population moments (ie the means, variances, etc of the theoretical model) to
corresponding sample moments (ie the means, variances, etc of the sample data observed) and solve for the

parameter(s).

The one-parameter case

« This is the simplest case: to equate population mean, E(X ), to sample mean, x , and solve for the parameter,

E[X] = %Zn: X;
i=1



Method of Moments

« We can apply this method to a number of different single parameter distributions. For example, the method
works well with a random sample from a Poisson distribution.

* Note: For some populations the mean does not involve the parameter, such as the uniform on (-8, 8) or the
normal N(0,6%) , in which case a higher-order moment must be used.
* However such cases are rarely of practical importance.

+ The estimator is written in upper case as it is a random variable and will have a sampling distribution. The
estimate is written in lower case as it comes from an actual sample of numerical values.



2 Method of Moments

The two—parameter case
* With two unknown parameters, we will require two equations.

This involves equating the first and second-order moments of the population and the sample, and solving the
resulting pair of equations.

Moments about the origin can be used but the solution is the same (and often more easily obtained) using
moments about the mean - apart from the first-order moment being the mean itself.



Method of Moments

The first-order equation is the same as in the one-parameter case:

1 n
E[X] = ;Z x;
i=1
The second-order equation is:
n
1
E[X?] =) x2
i=1
or equivalently:
1 n n
E((x —w?|= ;Z(x,; - %)% =1/n Z x; — x?
i=1 i=1
n
1 2 _ =2
or var(X) = ;Z X;i—X
i=1

Note that we are not equating sample and population variances here; we are using a denominator of n on
the right hand side of the final equation, whereas the sample variance uses a denominator of n-1.



Maximum Likelihood Estimate(MLE)

In most cases taking logs greatly simplifies the determination of the maximum likelihood estimator (MLE) 6.

Differentiating the likelihood or log likelihood with respect to the parameter and setting the derivative to
zero gives the maximum likelihood estimator for the parameter.

It is necessary to check, either formally or through simple logic, that the turning point is a maximum.
Generally the likelihood starts at zero, finishes at or tends to zero, and is non-negative. Therefore if there is

one turning point it must be a maximum.

The formal approach would be to check that the second derivative is negative. For the above example we get:
il L) = —— <0

—— Lo = —-——<0>=max

daz %9 22



Question 1

« The sample mean and sample variance for a large random sample from a Gamma(a, 1) distribution are 10
and 25, respectively. Use the method of moments to estimate « and 4 .



Solution

« Equating the mean and variance, we get:

-~

a
=10 and-— =25
AZ

| Q)

« Dividing the first equation by the second gives:

Fi 10 0.4 a=10x0.4=4
= — = U. = = . =
25 a X



2 Method of Moments

* For cases with more than two parameters, moments about zero should be used.

« For example, if you had 3 parameters to estimate, you would use the set of equations:

BN =isn BNI=ind B =34

« This approach can be extended in an obvious way for more than three parameters.
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Likelihood vs Probability

Probability corresponds to finding the chance of something given a sample distribution of the data, while on the
other hand, Likelihood refers to finding the best distribution of the data given a particular value of some feature
or some situation in the data.

Probability Likelihood
Consider a dataset containing the heights of the » Consider the exactly same dataset example as
people of a particular country. Let's say the mean of provided above for probability, if their likelihood of
the data is 170 & the standard deviation is 3.5. height > 170 cm has to be calculated then it will be

done using the information shown below:
P(height > 170|u =170,0 = 3.5)
Likelihood(u = 170,60 = 3.5|height > 170)
While calculating probability, feature value can be

varied, but the characteristics(mean & Standard * The likelihood in very simple terms means to
Deviation) of the data distribution cannot be increase the chances of a particular situation to
altered. happen/occur by varying the characteristics of the

dataset distribution.
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Maximum Likelihood Estimate(MLE)

The method of maximum likelihood is widely regarded as the best general method of finding estimators. In

particular maximum likelihood estimators have excellent and usually easily determined asymptotic properties
and so are especially good in the large-sample situation.

* Prerequisites and Assumptions:

* Knowing the underlying distribution.
* Assuming that the sample points are independent and identically distributed.



Maximum Likelihood Estimate(MLE)

The one-parameter case

* The most important stage in applying the method is that of writing down the likelihood:
n
L©) = | | fexi0)
i=1

« for a random sample x4, x5, ..., x,, from a population with density or probability function f(x;8).
* [I means product, so []i; f(x;) would mean f(x;) x f(x,) X f(x3)X ..X f(x,). The above statement is

saying that the likelihood function is the product of the densities (or the probability functions in the case of

discrete distributions) calculated for each sample value.

* Remember that 6 is the parameter whose value we are trying to estimate.

» The likelihood is the probability of observing the sample in the discrete case, and is proportional to the
probability of observing values in the neighbourhood of the sample in the continuous case.
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Example

fXi|P) = PY{(1 - P)! %
. ¥ = 1, male
£ 70, female
f(1lp) =Pt -pP)"1=p
fOIP)=P°(1—-P)'°=1-pP
f(X1, Xz .., XyIP) = PL(1 = P)' %15 PX2(1 = P)1 %2 ¢ o pAN (1 — P)1 74N

N
P(X;=x1,X, =%p,., Xy = X)) = HPXi(l — Pyl Xi=p

i=1



Example

« L=[LL, P —-P)=5

aL ~

5 =0=>P

» logL =log([T., P*i(1 — P)~*1) = ¥ log(P*i(1 — P)*1) = ¥V (X;logP + (1 — X;) log(1 — P))
« logL =logP ¥ . X; +log(1—-P)IN.(1-X;)

1 —
* BUtEZ?{:lXi =X

« logL = NXlogP + N(1—X)log(1—P)

dlogL NX N(1-X)
— = — — — ) =0
ap P 1-P



4 Maximum Likelihood Estimate(MLE)

The two-parameter case

 This is straightforward in principle and the method is the same as the one-parameter case, but the solution of
the resulting equations may be more awkward, perhaps requiring an iterative or numerical solution.

» The only difference is that a partial derivative is taken with respect to each parameter, before equating each to
zero and solving the resulting system of simultaneous equations for the parameters.



Maximum Likelihood Estimate(MLE)

So in summary, the steps for finding the maximum likelihood estimator in straightforward cases are:

* Find InL and simplify the resulting expression.

Write down the likelihood function, L.

* Partially differentiate InL with respect to each parameter to be estimated.
* Set the derivatives equal to zero.

* Solve these equations simultaneously.



5 A special case - the uniform distribution

For populations where the range of the random variable involves the parameter, care must be taken to specify
when the likelihood is zero and non-zero. Often a plot of the likelihood is helpful.

We look at this in the next example - note how we specify when the likelihood is zero (ie it does not exist for
the specified values of the parameter) and non-zero (ie where it does exist for the specified values of the
parameter).

The second important feature about this example is that the usual route for finding the maximum using
differentiation breaks down.



Example

Question:

» Derive the maximum likelihood estimate of 8 for U(0,8) based on a random sample of values x4, x5, ..., xy,.



Example

Solution:
« For a sample from the U(0, 8) distribution we must have 0 < x4, ..., x;, < 6. Hence max x; < 6.

* Thus the likelihood for a sample of size n is:

L = on if 6 > maxx;
0 otherwise
» Differentiation doesn’t work because %lnL(B) = —g which gives a turning point of 8 — oo.
dz

» The second derivative shows the problem InL(@) = ;—12 > 0 . We have a minimum as 6 — oo,

a6z

. . - 1
+ So using common sense, we must find the @ that maximises L(0) = on ° We want 6 to be as small as

possible subject to the constraint that & = maxx;. Hence 6 = max Xi.



6 Incomplete samples

The method of maximum likelihood can be applied in situations where the sample is incomplete. For example,
truncated data or censored data in which observations are known to be greater than a certain value, or multiple
claims where the number of claims is known to be two or more.

Censored data arise when you have information about the full range of possible values but it's not complete (eg
you only know that there are, say, 6 values greater than 500). Truncated data arise when you actually have no
information about part of the range of possible values (eg you have no information at all about values greater
than 500).

In these situations, as long as the likelihood (the probability of observing the given information) can be written
as a function of the parameter(s), then the method can be used. Again in such cases the solution may be more
complex, perhaps requiring numerical methods.



Incomplete samples

« For example, suppose a sample yields n observations (x;, x5 ..., x;) and m observations greater than the value
y , then the likelihood is given by:

L® = || [rox. o xipex > pim
i=1

« Our estimate will be as accurate as possible if we use all the information that we have available. For
incomplete samples, we don’t know what the values above y are. All we know is that they are greater thany.

« Since the values above y are unknown we cannot use L(6) = [[X" f(X;, 0) We instead use the formula
given.

« |If the information is more detailed than ‘greater thany " we can use a more detailed likelihood function. For

example, if we have m observed values between y and z, and p observed values above z , in addition to the n
known values, then we would use:

1@ = | [rx.0)x (PG < X < D" x [POX > )17
i=1



7 Independent samples

* For independent samples from two populations which share a common parameter, the overall likelihood is the
product of the two separate likelihoods.



Example

Question:

« The number of claims, X, per year arising from a low-risk policy has a Poisson distribution with mean . The
number of claims, Y, per year arising from a high-risk policy has a Poisson distribution with mean 2u .

* A sample of 15 low-risk policies had a total of 48 claims in a year and a sample of 10 high-risk policies had a
total of 59 claims in a year. Determine the maximum likelihood estimate of u based on this information.



Example

Solution:

The likelihood for these 15 Iow risk and 10 hlgh risk pohmes is:

L(w) = ]_[P(X = %) x ]_[P(Y v) =

= COTIS‘t(ITItX.HEl: Xig=15H x
= constant x u*8e 1 x y>%e~2% = constant x u'

= (2u)%i
e
V!

—H —2u

j=1
10
Zj—lyje OP.
076—35u

The log-likelihood is:
InL(u) = contant + 107 Inu — 35u

Differentiating and setting equal to zero gives:

d InL(u) —107 35 =1 —107 3.057
—_— -_ — : = — .
du ALl U “ 35
Differentiating again to check we get a maximum:
d? 107
d—;ﬂlnL(u) = _F < 0 = max



Unbiasedness

« Consideration of the sampling distribution of an estimator can give an indication of how good it is as an
estimator. Clearly the aim is for the sampling distribution of the estimator to be located near the true value
and have a small spread.

« If we have a random sample X = (X;, X5, ..., X,;) from a distribution with an unknown parameter 6 and g(X) is
an estimator of 6 , it seems desirable that E[g(X)] = 6

* This is the property of unbiasedness.

* You can think of an unbiased estimator as one whose mean value equals the true parameter value.



O Bias

- If an estimator is biased, its bias is given by E[g(X)] — 6, ie it is a measure of the difference between the
expected value of the estimator and the parameter being estimated.

« If the bias is greater than zero, the estimator is said to be positively biased ie it tends to overestimate the true
value. Alternatively, the bias could be less than zero, leading to a negatively biased estimator that would tend

to underestimate the true value.



Unbiasedness

The property of unbiasedness is not preserved under non-linear transformations of the estimator/parameter.

So, for example, the fact that S2 is an unbiased estimator of the population variance does not mean that S is
an unbiased estimator of the population standard deviation.

As indicated earlier unbiasedness seems to be a desirable property. However it is not necessarily an essential
property for an estimator. There are many common situations in which a biased estimator is better than an
unbiased one, and, in fact, better than the best unbiased estimator.

The importance of unbiasedness is secondary to that of having a small mean square error.

An unbiased estimator is simply one that for different samples will give the true value on average. However, it
could be that some of the estimates are too large and some are too small — but on average they give the true
value. So we need some way of measuring the ‘spread’ of the estimates obtained for different samples. That
measure is the mean square error and is covered in the next slides.

Therefore a biased estimator whose value does not deviate very far from the true value (ie has a small
spread) would be preferable to an unbiased one whose values are “all over the place’ — as the biased
estimator would be more reliable (ie no matter what sample we had, the estimate is still likely to be closer to
the true value).



Example

Question:

IL.

The following are estimators for the variance of a distribution having mean u and variance o2 .
Obtain the bias for each estimator:

SZ

I

1 —
— 2= (X — X)?

n-1

62 ==Y (X; — X)?

n~i=1



Example

Solution:

The formula for the bias of S? is:

Consider E(S?):

E(S?) =E

bias(S?) = E(S%) — ¢*

n
1 _
= —_— 2_ 2
E[n_l(é X? —nX?)

=1

n%i(xi %

=1

But since;

- 1 - (zn: E(X?) - nE()?z))

i=1

E(X?) = var (X;) + E2(X;) = 0% + p?
_ _ _ o2
E(X?) =var(X) + E2(X) = —+ u?

|



Example

Solution:

* So we get:

1 [(x 2
E(S?) = m((zwz + ,uz) —n (% + ,uz))
i=1

1
=n_1(n02+nu2—02—nu2)

 So the bias is:
bias(§?) = E(§*) —0?=0%—-0%2=0

» This means that $2 is an unbiased estimator of g2



Example

Solution:

.
+ Since ¢* = "T_lSZ we can use the result from part (i) to get:

n—1 n—1 n—1
E(6%) = E|——5*| = ——E(s) =——0"
n n n

 Sothe bias is:

-1 1
bias(6%) = E(6%) — 0% = L gt g2 = —=g?
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Mean Square Error

As biased estimators can be better than unbiased ones a measure of efficiency is needed to compare
estimators generally. That measure is the mean square error.

« The mean square error (MSE) of an estimator g(X) for 6 is defined by:
2
MSE((9(X))=El(g(X)- 6)"]
* Note that this is a function of 6 .

» Thus the mean square error is the second moment of g(X) about 8 and an estimator with a lower MSE is said
to be more efficient.

« The MSE of a particular estimator can be worked out directly as an integral using the density of the sampling
distribution of g(X) , or using the density of X itself.



10

Mean Square Error

.

However it is usually much easier to use the alternative expression:
MSE = Variance + bias?
as this makes use of quantities that are already known or can easily be obtained.

This expression can be proved as follows:
(Simplifying things by dropping the X and writing simply g.)

MSE(g) = E[(g — 6)°]
= E[{(g — Elg]) + (E[g] — 6)}*]
= E[(g — E[g])?] + 2(E[g] — 0)E|g — Elg]| + [E[g] — 6]
= var[g] + 0 + bias?[g] asrequired

Note: If the estimator g(X) is unbiased, then MSE = variance.



11 Consistency

The following diagram gives the sampling distributions of two estimators: one is unbiased but has a large

variance, the other is biased with a much smaller variance. This illustrates a situation in which a biased
estimator is better than an unbiased one.

PDF

20

15

1.0

05

0.0

— unbiasad, large MSE
biasad, small MSE




11 Consistency

« ltis clear that an estimator with a ‘'small’ MSE is a good estimator. It is also desirable that an estimator gets
better as the sample size increases. Putting these together suggests that it is desirable that MSE — 0 as
n — oo. This property is known as consistency.



Example

Question

.

The estimator, 62, is used to estimate the variance of a N(u, 0%) distribution based on a random sample of n
observations:

1 Z" :
g _n (Xl X)
i=1

Determine the mean square error of 6

Determine whether 62 is consistent.



12 Asymptotic distribution of MLEs

» Given a random sample of size n from a distribution with density (or probability function in the discrete case)
f(x;8), the maximum likelihood estimator 8 is such that, for large n, 8 is approximately normal, and is
unbiased with variance given by the Cramér-Rao lower bound, that is:

6 N(6,CRLB)

1
nE {[%logf(X; 9)]2}

« The MLE can therefore be called asymptotically efficient in that, for large n, it is unbiased with a variance
equal to the lowest possible value of unbiased estimators.

where CRLB =




12

Asymptotic distribution of MLEs

» CRLB gives a lower bound for the variance of an unbiased estimator of a parameter (which is the same as its
mean square error). So no unbiased estimator can have a smaller variance than the CRLB.

* This is potentially a very useful result as it provides an approximate distribution for the MLE when the true
sampling distribution may be unknown or impossible to determine easily, and hence may be used to obtain
approximate confidence intervals.

* Confidence intervals will be covered going further.

* The result holds under very general conditions with only one major exclusion: it does not apply in cases where
the range of the distribution involves the parameter, such as the uniform distribution.

* This is due to a discontinuity, so the derivative in the formula doesn’'t make sense.
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12 Asymptotic distribution of MLEs

« There are two useful alternative expressions for the CRLB based on the likelihood itself.
* Noting that L(8) is really L(8,X), these are:

1 1

55 and CRLB = 5
i
E{[aelogL(G X)‘ }

CRLB = 3
[692 logL(e, X)]




Example

Question

« Derive the CRLB for estimators of the variance of a N (u, %) distribution, where u is known, based on a
random sample of n observations.
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Comparing the method of moments with
MLE

*  We now compare the method of moments and the method of maximum likelihood.
« Essentially maximum likelihood is regarded as the better method.

« In the usual one-parameter case the method of moments estimator is always a function of the sample mean
X and this must limit its usefulness in some situations. For example in the case of the uniform distribution on
(0,8) the method of moments estimator is 2X and this can result in inadmissible estimates which are greater
than 6.

« For example, supposing we had the following data from U(0,0):
45,1.8,2.7,0.9,1.3

« This gives ¥ = 2.24 . Since the method of moments estimator is = 2X, we have § = 4.48 . But this estimate
for the upper limit is inadmissible as one of the data values is greater than this.



Comparing the method of moments with

13 MLE

Nevertheless in many common applications such as the binomial, Poisson, exponential and normal cases
both methods yield the same estimator.

In some situations such as the gamma with two unknown parameters the simplicity of the method of
moments gives it a possible advantage over maximum likelihood which may require a complicated numerical

solution.

To obtain the MLE of @ from a gamma distribution requires the differentiation of I'(a), which will require
numerical methods.
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