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1 Introduction

In many research areas, such as medicine, education, advertising and insurance, it is necessary to carry out
statistical tests. These tests enable researchers to use the results of their experiments to answer questions
such as:
> |s drug A a more effective treatment for AIDS than drug B?
» Does training program T lead to improved staff efficiency?
> Are the severities of large individual private motor insurance claims consistent with a lognormal
distribution?

A hypothesis is where we make a statement about something; for example the mean lifetime of smokers is
less than that of non-smokers. A hypothesis test is where we collect a representative sample and examine it
to see if our hypothesis holds true.



Hypothesis

Hypothesis: late 16th century: via late Latin from Greek hypothesis ‘foundation’, from hypo ‘under’ + thesis

‘placing’.
A statistical hypothesis is a hypothesis that is testable on the basis of observed data modelled as the realized
values taken by a collection of random variables.



3 Testing of Hypothesis

The standard approach to carrying out a statistical test involves the following steps:
specify the hypothesis to be tested

select a suitable statistical model

design and carry out an experiment/study

calculate a test statistic

calculate the probability value

determine the conclusion of the test

YVYVVYVYY



3 Testing of Hypothesis

Null Hypothesis H

The null hypothesis states that a population parameter (such as the mean, the standard deviation, and so on)
is equal to a hypothesized value. The null hypothesis is often an initial claim that is based on previous
analyses or specialized knowledge.

The basic hypothesis being tested is the null hypothesis, denoted Hy — it can sometimes be regarded as
representing the current state of knowledge or belief about the value of the parameter being tested (the
'status quo’ hypothesis). In many situations a difference between two populations is being tested and the null
hypothesis is that there is no difference.

Alternate Hypothesis H,

The alternative hypothesis states that a population parameter is smaller, greater, or different than the
hypothesized value in the null hypothesis. The alternative hypothesis is what you might believe to be true or
hope to prove true.

In a test, the null hypothesis is contrasted with the alternative hypothesis, denoted H;.

The null and alternative hypotheses are two mutually exclusive statements about a population. A hypothesis
test uses sample data to determine whether to reject the null hypothesis.



Types of Hypotheses

4
Q
- [ Hypotheses ]

Simple
Hypothesis

Composite
Hypothesis

parameters of the parameters are specified is called a

one in which all one in which not all of the
distribution are specified composite hypothesis.




4 Types of Hypotheses

Case |
« Normal Distribution: Hyp: u = 175,02 < 4

Case Il
« Normal Distribution: Hp: 4 = 175,0% =9

Case llI
» Binomial Distribution : n=12, p=0.5

Case IV
* Binomial Distribution : n =12, p< 0.5



5 Test

A test is a rule which divides the sample space (the set of possible values of the data) into two subsets, a region
in which the data are consistent with Hy , and its complement, in which the data are inconsistent with Hy . The

tests discussed here are designed to answer the question ‘Do the data provide sufficient evidence to justify our
rejecting Hy 7.



6 One-sided and two-sided tests

One-Tailed Test Two-Tailed Test
A one-tailed test is a statistical test in which the * A two-tailed test, in statistics, is a method in which
critical area of a distribution is one-sided so that it the critical area of a distribution is two-sided and
is either greater than or less than a certain value, tests whether a sample is greater than or less than a

but not both.

certain range of values..

P=0.05

One-tailed Test Vs Two-tailed Test




6 One-sided and two-sided tests

* In a test of whether smoking reduces life expectancies, the hypotheses would be:
» Hj : smoking makes no difference to life expectancy
» H;p:smoking reduces life expectancy

« This is an example of a one-sided test, since we are only considering the possibility of a reduction in life
expectancy ie a change in one direction. However we could have specified the hypotheses:

» Hj : smoking makes no difference to life expectancy
» Hi :smoking affects life expectancy

« This is a two-sided test, since the alternative hypothesis considers the possibility of a change in either direction,
le an increase or a decrease.



Example

Which Test would you use?

Testing a new drug against an existing treatment.
A certain course claiming 50% higher chances of employment after completion.

There are two movies that caught your eye, but you're not really sure which one is better.



7 Test Statistics

A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing.

A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a
data-set that reduces the data to one value that can be used to perform the hypothesis test.

In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behavior
that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or
that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

The actual decision is based on the value of a suitable function of the data, the test statistic. The set of
possible values of the test statistic itself divides into two subsets, a region in which the value of the test
statistic is consistent with Hy , and its complement, the critical region (or rejection region), in which the value
of the test statistic is inconsistent with Hy.

If the test statistic has a value in the critical region, Hy is rejected. The test statistic (like any statistic) must be
such that its distribution is completely specified when the value of the parameter itself is specified (and in
particular ‘under Hy ' ie when Hy is true).



8 Level of Significance (a)

The level of significance is defined as the fixed probability of wrong elimination of null hypothesis when in fact, it
Is true.

The level of significance is the measurement of the statistical significance. It defines whether the null
hypothesis is assumed to be accepted or rejected.
It is expected to identify if the result is statistically significant for the null hypothesis to be false or rejected.

The level of significance is stated to be the probability of type | error and is preset by the researcher with the
outcomes of error.



9 Critical Region

A critical region, also known as the rejection region, is a set of values for the test statistic for which the null
hypothesis is rejected.

» If the observed test statistic is in the critical region then we reject the null hypothesis and accept the
alternative hypothesis.



9 Critical Region

84
Rejection Rejection
region region
Z; 0 g < . 0z
Find z, for a left-tail Find z, for a right-tail
test with o= .01. testwith o= .05.
Rejection Rejection Z,=1.645
3 .53 region region
% ~z,=-2.575
Ze 0 % and z, = 2.575

Find =z, and z,for a two-tail test with =q L.



10 Errors & Power

» The level of significance of the test, denoted « , is the probability of committing a Type | error, ie it is the
probability of rejecting Hy when it is in fact true.

» The probability of committing a Type Il error, denoted £, is the probability of accepting Ho when it is false.

* Anideal test would be one which simultaneously minimises a and  — this ideal however is not attainable in
practice.

» The power of a test is the probability of rejecting Hy when it is false, so that the power equals 1 — 3.
* In general, this will be a function of the unknown parameter value. For simple hypotheses the power is a

single value, but for composite hypotheses it is a function being defined at all points in the alternative
hypothesis.



11 Best Tests

The classical approach to finding a ‘good’ test (called the Neyman-Pearson theory) fixes the value of a , ie the
level of significance required and then tries to find such a test for which the other error probability, g, is as
small as possible for every value of the parameter specified by the alternative hypothesis. This can also be
described as finding the ‘'most powerful’ test.

The key result in the search for such a test is the Neyman-Pearson lemma, which provides the ‘best’ test
(smallest B) in the case of two simple hypotheses. For a given level, the critical region (and in fact the test
statistic) for the best test is determined by setting an upper bound on the likelihood ratio Lo/L; , where
Lo and Lq are the likelihood functions of the data under Hy and H; respectively.



12

The Neyman-Pearson lemma

Formally, if C is a critical region of size @ and there exists a constant k such that ALQ < k inside C and ALQ >
1 1

k outside C, then C is a most powerful critical region of size a for testing the simple hypothesis 8 = 6, against
the simple alternative hypothesis 8 = 6;.

So a Neyman-Pearson test rejects H if:

Likelihood under H
Likelihood under Hq

< critical value

Common tests are often such that the null hypothesis is simple, eg Hy: 8 = 8, against a composite alternative,
eg Hq: 6 # 6, which is two-sided, and H1: 6 > 6y or H1:0 < 6y, which are one-sided.

Here it is only in certain special cases (usually one-sided cases) that a single test is available which is best (ie
uniformly most powerful) for all parameter values. In cases where a single best test in the sense of the Neyman-
Pearson Lemma is unavailable, another approach is used to derive sensible tests. This approach, which is a
generalisation of the Lemma, produces tests which are referred to as likelihood ratio tests.



13 Likelihood ratio tests

The critical region (and test statistic) for the test are determined by setting an upper bound on the ratio (max
Lo /max L), where max Lg is the maximum value of the likelihood L under the restrictions imposed by the null
hypothesis, and max L is the overall maximum value of L for all allowable values of all parameters involved.

In the most common case when Hy and H; together cover all possible values for the parameters, this
generalised test rejects Hy if:

max(Likelihood under Hy)
max(Likelihood under Hy + Hq)

< critical value



13 Likelihood ratio tests

Important results include the case of sampling from a N(u, 62) distribution. The method leads to the test
statistic: .

X— g

S/yn

» for tests on the value of the mean u .

~th—1 under Hy: = Uy

«  We're assuming here that a2 is unknown. If it is known, then the z-test is the ‘best’ test.
 The method also leads to the test statistic::

((n- 1)52)

2
0o

« for tests on the value of the variance ¢2.

2 a2 = g2
~x5_1 under Hy: 0% = 05




14 P-values

Under the ‘classical’ Neyman-Pearson approach, with a fixed predetermined value of a , a test will produce a
decision as to whether to reject Hp . But merely comparing the observed test statistic with some critical value
and concluding eg ‘using a 5% test, reject Hp ' or ‘reject Hy with significance level 5%’ or ‘result significant at
5%’ (all equivalent statements) does not provide the recipient of the results with clear detailed information on
the strength of the evidence against Hy .

A more informative approach is to calculate and quote the probability value (p-value) of the observed test
statistic. This is the observed significance level of the test statistic — the probability, assuming Hy is true, of
observing a test statistic at least as ‘extreme’ (inconsistent with Hy ) as the value observed.



14 P-values

* The p-value is the lowest level at which Hy can be rejected.
* The smaller the p-value, the stronger is the evidence against the null hypothesis.

« For example, when testing Hyp: 8 = 0.5 vs Hy: 8 = 0.4, where 6 is the probability of a coin coming up heads, and
82 heads have been observed in 200 tosses, the p-value of the result is:

P(X <82) where X~Bin(200,0.5)

82.5-100
P\Z<

= P(Z < —2.475) = 0.0067
=0 ) ( )

* Hy is therefore extremely unlikely — probability < 0.01- and there is very strong evidence against Hy and in
favour of Hy. A good way of expressing the result is: ‘'we have very strong evidence against the hypothesis that
the coin is fair (p-value 0.007) and conclude that it is biased against heads'.



14 P-values

Testing does not prove that any hypothesis is true or untrue. Failure to detect a departure from Hy means that
there is not enough evidence to justify rejecting Hy, so Hy is accepted in this sense only, whilst realising that it

may not be true. This attitude to the acceptance of Hy is a feature of the fact that Hy is usually a precise
statement, which is almost certainly not exactly true.



15 Testing the value of a population mean

Situation: random sample, size n, from N(y, 62) — sample mean X

Testing: Ho: 11 = o

_ X -
(a) o known : test statistic is X, andﬂrdﬂ(ﬂ. 1) under H,
o/\n

X —
(b) o unknown : test statistic is (—pﬂ)-»tn_l under H,
S/\n

For large samples, N(0,1) can be used in pIace_of tn—1 . Further, the Central Limit Theorem justifies the use of a
normal approximation for the distribution of X in sampling from any reasonable population, and s? is a good
estimate of g2, so the requirement that we are sampling from a normal distribution is not necessary in either

case (a) or (b) when we have a large sample.



16

Testing the value of a population variance

 Situation: random sample, size n, from N(u, 02) — sample variance S2.
* Testing: Hy: 0> = o¢

_ 2
. Test statisticis a%)s ~x>_, under H,

« For large samples, the test works well even if the population is not normally distributed.



17

Testing the value of a population proportion

* Testing:Hy: p= po.

Situation: n binomial trials with P(success) = p ; we observe x successes.

» Test statistic is X ~ Bin(n,po )Junder Hy .

» For large n, use the normal approximation to the binomial (with continuity correction), ie use:

o))

~N(0,1)
p(1-p)
n
or.
X+ % —np
~N(0,1)

Jnp(1 —p)



A
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18 Testing the value of the mean of a Poisson distribution

 Situation: random sample, size n, from Poi (1) distribution.
* TESting: Ho: A = A

» Test statistic is sample sum YX;~Poi(nlg) under Hy . In the case where n is small and nJ is of moderate size,
probabilities can be evaluated directly (or found from tables, if available).

» For large samples (or indeed whenever the Poisson mean is large) a normal approximation can be used for the
distribution of the sample sum or sample mean. Recall that
* YXi~Poi(nd) - N(ni, ni).

. = X-4p
» Test statistic is X,and ~
-.,.lﬂn.‘n"l‘l

N(0,1) under H,,.

X;i—ni
« orwe can use YX;, and Z’—\/TO~
nio

» Using the second version it is easier to incorporate a continuity correction. The first version has continuity
correction 0.5/n, whereas the second version has continuity correction 0.5.

N(0,1) under H,.



19 Testing the value of the difference between two population means

 Situation: independent random samples, sizes n, and n, from N(uq, o), N(uz, 03) respectively.
° TESting: Hoypr—upy =6

(a) of,0% known
Xy—%p—8

Test statistic: z =

2 2
F o
91,93
ny n3

(b) o#,0% unknown-much the more usual situation



A
-

19 Testing the value of the difference between two population means

Large samples: use S? to estimate o2. We will now use a t distribution.
l l

Further, the Central Limit Theorem justifies the use of a normal approximation for the distribution of the test
statistic in sampling from any reasonable populations, so the requirement that we are sampling from normal
distributions is not necessary when we have large samples.

Small samples: under the assumption af = 0§(= o say) , this common variance is estimated by Sp?, and the
. e X1-Xp-4 L :
test statisticis t = %( which is distributed as t with n; + n, — 2 degrees of freedom under H,, .
Pyny ng

_ 2 _ 2
(n1 1) Sl+ (nz 1)52

Remember that s%, =
ni+nz—2



A
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20

Testing the value of the ratio of two population means

» Situation; independent random samples, sizes ny and n, from N(u,, 0f), N(u2, 03) respectively. Sample
variances 512 and Sé.

» Testing: Hy: 0% = 0} vs Hi:o0f # 0%
« This test is a formal prerequisite for the two-sample t test, for which the assumption ¢4 = ¢4 is required. In

practice, however, a simple plot of the data is often sufficient to justify the assumption — only if the population
variances are very different in size is there any problem with the t test.

* Test statistic: 57 /S7 ~F,, _1,,-1 under H,.



Testing the value of the difference between two population proportions

Both one-sided and two-sided tests can easily be performed on the difference between two binomial
probabilities — at least for large samples.

Situation:
ny (large) trials with P(success) = py; observe x;1 successes.

n; (large) trials with P(success) = p, ; observe x; successes.

TEStingI Ho: p1=p2

. o (P1—P2)
Test statistic —=—— D) N (0, 1) under Hy.
ny n2

Where p;, p, are the maximum likelihood estimates (MLEs) of p1 and p, respectively, (the sample proportions
(?iﬁ) and pds the MLE of the common p under the null hypothesis, which is the overall sample proportion,
1 2

X1+X;
namely ——



A
-

22 Testing the value of the difference between two Poisson means

 Situation: independent random samples, sizes n; and n; , from Poi(1,) and Poi(4;) distributions. Considering
the case in which normal approximations can be used — which is so whenever the sample sizes are large and/or
the parameter values are large:

i TEStingI Ho: 1= Ay

A1—42)

L L {
* Test StatIStIC:_Jﬁ ~N(0, 1) under H,.
+

« where are the maximum likelihood estimates (MLEs) (the sample means X, X,respectively) and 1 is the
MLE of the common A under the null hypothesis, which is the overall sample mean.



23 Basic test - paired data

* In testing for a difference between two population means, the use of independent samples can have a major
drawback. Even if a real difference does exist, the variability among the responses within each sample can be
large enough to mask it. The random variation within the samples will mask the real difference between the
populations from which they come.

» One way to control this variability external to the issue in question is to use a pair of responses from each
subject, and then work with the differences within the pairs. The aim is to remove as far as possible the subject-
to-subject variation from the analysis, and thus to ‘'home in" on any real difference between the populations.

« Assumption: differences constitute a random sample from a normal distribution.

° TEStingI Ho: up (= Ui — ﬂz) =0

. h)
* Test statistic: =~lp_1 under H,.

Sp/n

»  We can use N(0,17) for t, and do not require the 'normal’ assumption, if n is large.



24

Tests and confidence intervals

There are very close parallels between the inferential methods for tests and confidence intervals. In many
situations there is a direct link between a confidence interval for a parameter and tests of hypothesised values
for it.

A confidence interval for 6 can be regarded as a set of acceptable hypothetical values for 6 , so a value 6y
contained in the confidence interval should be such that the hypothesis Hy: 8 = 6y will be accepted in a
corresponding test. This generally proves to be the case.

In some situations there is a difference between the manner of construction of the confidence interval and that
of the construction of the test statistic which is actually used. For example the confidence interval for the
difference between two proportions (based on normal approximations) is constructed in a different way from
that used for the test statistic in the corresponding test, where an estimate of a common proportion (under Hy)
Is used.

As a result, in this and similar cases there is only an approximate match (albeit a good one) between the
confidence interval and the corresponding test.



25 Non-parametric tests

» The tests we have been considering so far all make assumptions about the distribution of the variables of

interest within the population. If these assumptions are not correct, then the level of statistical significance can
be affected.

* Itis possible to devise tests which make no distributional assumptions. Such tests are termed non-parametric.

They have the advantages of being applicable under conditions in which the tests in the previous sections
should not be used.



26 Chi-square tests

These tests are relevant to category or count data. Each sample value falls into one or other of several
categories or cells. The test is then based on comparing the frequencies actually observed in the
categories/cells with the frequencies expected under some hypothesis, using the test statistic

(fi — e)?

€;

)

where f; and e; are the observed and expected frequencies respectively in the ith category/cell, and the
summation is taken over all categories/cells involved. This statistic has, approximately, a chi-square (y?)
distribution under the hypothesis on the basis of which the expected frequencies were calculated.



26 Chi-square tests

Goodness of fit

This is investigating whether it is reasonable to regard a random sample as coming from a specified
distribution, ie whether a particular model provides a ‘good fit' to the data.

Degrees of freedom

Suppose there are k cells, so k terms in the summation which produces the statistic, and that the sample size is
n = Yf;. The expected frequencies also sum to n, so knowing any k-1 of them automatically gives you the last
one. There is a dependence built in to the k terms which are added up to produce the statistic — and this is the
reason why the degrees of freedom of the basic statistic is k-1 and not k.

Further, for each parameter of the distribution specified by the null hypothesis which must be estimated from
the observed data, another degree of dependence is introduced in the expected frequencies — for each
parameter estimated another degree of freedom is lost. The theory behind this assumes that the maximum
likelihood estimators are used. So the number of degrees of freedom is reduced by the number of parameters
estimated from the observed data.



26 Chi-square tests

The ‘accuracy’ of the chi-square approximation

 The test statistic is only approximately, not exactly, distributed as y? . The presence of the expected frequencies
e; in the denominators of the terms to be added up is important — dividing by very small e; values causes the
resulting terms to be somewhat large and ‘erratic’, and the tail of the distribution of the statistic may not match
that of the y? distribution very well. So, in practice, it is best not to have too many small e; values, which can be
done by combining cells and suffering the consequent loss of information/degrees of freedom. The most
common recommendation is not to use any e; which is less than 5.

» (However, the statistic is more robust than that and in practice a less conservative approach, such as ensuring
that all e; are greater than 1 and that not more than 20% of them are less than 5, may be taken.)



27 Contingency tables

» A contingency table is a two-way table of counts obtained when sample items (people, companies, policies,
claims etc) are classified according to two category variables. The question of interest is whether the two
classification criteria are independent.

* Hy: the two classification criteria are independent.

« The simple rule for calculating the expected frequency for any cell is then:
row total x column total

table total

* (ie the proportion of data in row i is f;. /f so if the criteria are independent, the number expected in cell (i, j) is

(fi- /)% f})

» The degrees of freedom associated with a table with r rows and ¢ columns is:
(rc-1)-(r-1)-(c-1)=(r-1T)(c-1)

* since the column totals and row totals reduce the number of degrees of freedom.

* An important use of this method is with a table of dimension 2 x c (or r x 2 ) which gives a test for differences
among 2 or more population proportions.
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