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Introduction1

• In many research areas, such as medicine, education, advertising and insurance, it is necessary to carry out 
statistical tests. These tests enable researchers to use the results of their experiments to answer questions 
such as:
� Is drug A a more effective treatment for AIDS than drug B?
� Does training program T lead to improved staff efficiency?
� Are the severities of large individual private motor insurance claims consistent with a lognormal 

distribution?

• A hypothesis is where we make a statement about something; for example the mean lifetime of smokers is 
less than that of non-smokers. A hypothesis test is where we collect a representative sample and examine it 
to see if our hypothesis holds true.



Hypothesis2
Hypothesis: late 16th century: via late Latin from Greek hypothesis ‘foundation’, from hypo ‘under’ + thesis 
‘placing’.

A statistical hypothesis is a hypothesis that is testable on the basis of observed data modelled as the realized 
values taken by a collection of random variables.



Testing of Hypothesis3
The standard approach to carrying out a statistical test involves the following steps:

� specify the hypothesis to be tested
� select a suitable statistical model
� design and carry out an experiment/study
� calculate a test statistic
� calculate the probability value
� determine the conclusion of the test



Testing of Hypothesis3
Null Hypothesis 𝑯𝟎
• The null hypothesis states that a population parameter (such as the mean, the standard deviation, and so on) is 

equal to a hypothesized value. The null hypothesis is often an initial claim that is based on previous analyses or 
specialized knowledge.

• The basic hypothesis being tested is the null hypothesis, denoted 𝐻0 – it can sometimes be regarded as 
representing the current state of knowledge or belief about the value of the parameter being tested (the ‘status 
quo’ hypothesis). In many situations a difference between two populations is being tested and the null 
hypothesis is that there is no difference.

Alternate Hypothesis 𝑯𝟏
• The alternative hypothesis states that a population parameter is smaller, greater, or different than the 

hypothesized value in the null hypothesis. The alternative hypothesis is what you might believe to be true or 
hope to prove true.

• In a test, the null hypothesis is contrasted with the alternative hypothesis, denoted 𝐻1.

• The null and alternative hypotheses are two mutually exclusive statements about a population. A hypothesis
test uses sample data to determine whether to reject the null hypothesis.



Types of Hypotheses4

Hypotheses

Simple 
Hypothesis

one in which all 
parameters of the 

distribution are specified

Composite 
Hypothesis

one in which not all of the 
parameters are specified is called a 

composite hypothesis.



Types of Hypotheses4
Case I

• Normal Distribution: H0: 𝜇 = 175, 𝜎2 < 4

Case II

• Normal Distribution: H0: 𝜇 = 175, 𝜎2 = 9

Case III
• Binomial Distribution : n=12, p=0.5

Case IV
• Binomial Distribution : n =12, p≤ 0.5



Test5
• A test is a rule which divides the sample space (the set of possible values of the data) into two subsets, a region in 

which the data are consistent with 𝐻0 , and its complement, in which the data are inconsistent with 𝐻0 . The tests 
discussed here are designed to answer the question ‘Do the data provide sufficient evidence to justify our 
rejecting 𝐻0 ?’.



One-sided and two-sided 
tests

6

One-Tailed Test

• A one-tailed test is a statistical test in which the 
critical area of a distribution is one-sided so that it 
is either greater than or less than a certain value, 
but not both.

Two-Tailed Test

• A two-tailed test, in statistics, is a method in which 
the critical area of a distribution is two-sided and 
tests whether a sample is greater than or less than a 
certain range of values..



One-sided and two-sided tests6
• In a test of whether smoking reduces life expectancies, the hypotheses would be:

� 𝐻0 : smoking makes no difference to life expectancy
� 𝐻1 : smoking reduces life expectancy

• This is an example of a one-sided test, since we are only considering the possibility of a reduction in life
expectancy ie a change in one direction. However we could have specified the hypotheses:

� 𝐻0 : smoking makes no difference to life expectancy
� 𝐻1 : smoking affects life expectancy

• This is a two-sided test, since the alternative hypothesis considers the possibility of a change in either direction,
ie an increase or a decrease.



Example

Which Test would you use?

• Testing a new drug against an existing treatment.

• A certain course claiming 50% higher chances of employment after completion.

• There are two movies that caught your eye, but you're not really sure which one is better.



Test Statistics7
A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing.

• A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a 
data-set that reduces the data to one value that can be used to perform the hypothesis test.

• In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behavior 
that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or 
that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

• The actual decision is based on the value of a suitable function of the data, the test statistic. The set of possible 
values of the test statistic itself divides into two subsets, a region in which the value of the test statistic is 
consistent with 𝐻0 , and its complement, the critical region (or rejection region), in which the value of the test 
statistic is inconsistent with 𝐻0.

• If the test statistic has a value in the critical region, 𝐻0 is rejected. The test statistic (like any statistic) must be 
such that its distribution is completely specified when the value of the parameter itself is specified (and in 
particular ‘under 𝐻0 ’ ie when 𝐻0 is true).



Level of Significance (𝜶)8
The level of significance is defined as the fixed probability of wrong elimination of null hypothesis when in fact, it is 
true.

• The level of significance is the measurement of the statistical significance. It defines whether the null 
hypothesis is assumed to be accepted or rejected.

• It is expected to identify if the result is statistically significant for the null hypothesis to be false or rejected.

• The level of significance is stated to be the probability of type I error and is preset by the researcher with the 
outcomes of error.



Critical Region9
A critical region, also known as the rejection region, is a set of values for the test statistic for which the null 
hypothesis is rejected.

• If the observed test statistic is in the critical region then we reject the null hypothesis and accept the 
alternative hypothesis.



Critical Region9



Errors & Power10
• The level of significance of the test, denoted 𝛼 , is the probability of committing a Type I error, ie it is the 

probability of rejecting 𝐻0 when it is in fact true.

• The probability of committing a Type II error, denoted 𝛽 , is the probability of accepting 𝐻0 when it is false.

• An ideal test would be one which simultaneously minimises 𝛼 and 𝛽 – this ideal however is not attainable in 
practice.

• The power of a test is the probability of rejecting 𝐻0 when it is false, so that the power equals 1 − 𝛽.

• In general, this will be a function of the unknown parameter value. For simple hypotheses the power is a 
single value, but for composite hypotheses it is a function being defined at all points in the alternative 
hypothesis.



Best Tests11
• The classical approach to finding a ‘good’ test (called the Neyman-Pearson theory) fixes the value of 𝛼 , ie the 

level of significance required and then tries to find such a test for which the other error probability, 𝛽 , is as 
small as possible for every value of the parameter specified by the alternative hypothesis. This can also be 
described as finding the ‘most powerful’ test.

• The key result in the search for such a test is the Neyman-Pearson lemma, which provides the ‘best’ test 
(smallest 𝛽) in the case of two simple hypotheses. For a given level, the critical region (and in fact the test 
statistic) for the best test is determined by setting an upper bound on the likelihood ratio 𝐿0/𝐿1 , where
𝐿0 and 𝐿1 are the likelihood functions of the data under 𝐻0 and 𝐻1 respectively.



The Neyman-Pearson lemma12

𝐿1 𝐿1
• Formally, if C is a critical region of size 𝛼 and there exists a constant k such that 𝐿0 ≤ 𝑘 inside C and 𝐿0 ≥

𝑘 outside C, then C is a most powerful critical region of size 𝛼 for testing the simple hypothesis 𝜃 = 𝜃0 against the 
simple alternative hypothesis 𝜃 = 𝜃1.

• So a Neyman-Pearson test rejects 𝐻0 if:

• Common tests are often such that the null hypothesis is simple, eg 𝐻0: 𝜃 = 𝜃0, against a composite alternative,
eg 𝐻1: 𝜃 ≠ 𝜃0, which is two-sided, and 𝐻1: 𝜃 > 𝜃0 or 𝐻1: 𝜃 < 𝜃0, which are one-sided.

• Here it is only in certain special cases (usually one-sided cases) that a single test is available which is best (ie 
uniformly most powerful) for all parameter values. In cases where a single best test in the sense of the Neyman- 
Pearson Lemma is unavailable, another approach is used to derive sensible tests. This approach, which is a 
generalisation of the Lemma, produces tests which are referred to as likelihood ratio tests.



Likelihood ratio tests13
• The critical region (and test statistic) for the test are determined by setting an upper bound on the ratio (max

𝐿0 /max L ), where max 𝐿0 is the maximum value of the likelihood L under the restrictions imposed by the null 
hypothesis, and max L is the overall maximum value of L for all allowable values of all parameters involved.

• In the most common case when 𝐻0 and 𝐻1 together cover all possible values for the parameters, this
generalised test rejects 𝐻0 if:𝐦𝐚𝐱 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎

𝐦𝐚𝐱(𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎 + 𝑯𝟏)
< 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒗𝒂𝒍𝒖𝒆



Likelihood ratio tests13
• Important results include the case of sampling from a N(𝜇, 𝜎2) distribution. The method leads to the test 

statistic:

• for tests on the value of the mean 𝜇 .
• We’re assuming here that 𝜎2 is unknown. If it is known, then the z-test is the ‘best’ test.
• The method also leads to the test statistic:

• for tests on the value of the variance 𝜎2.



P-values14
• Under the ‘classical’ Neyman-Pearson approach, with a fixed predetermined value of 𝛼 , a test will produce a 

decision as to whether to reject 𝐻0 . But merely comparing the observed test statistic with some critical value 
and concluding eg ‘using a 5% test, reject 𝐻0 ’ or ‘reject 𝐻0 with significance level 5%’ or ‘result significant at 5%’ 
(all equivalent statements) does not provide the recipient of the results with clear detailed information on the 
strength of the evidence against 𝐻0 .

• A more informative approach is to calculate and quote the probability value (p-value) of the observed test 
statistic. This is the observed significance level of the test statistic – the probability, assuming 𝐻0 is true, of 
observing a test statistic at least as ‘extreme’ (inconsistent with 𝐻0 ) as the value observed.



P-values14
• The p-value is the lowest level at which 𝐻0 can be rejected.

• The smaller the p-value, the stronger is the evidence against the null hypothesis.

• For example, when testing 𝐻0: 𝜃 = 0.5 vs 𝐻1: 𝜃 = 0.4, where 𝜃 is the probability of a coin coming up heads, and
82 heads have been observed in 200 tosses, the p-value of the result is:

𝑷 (𝑿 ≤ 𝟖𝟐) 𝒘𝒉𝒆𝒓𝒆 𝑿~𝑩𝒊𝒏 (𝟐𝟎𝟎, 𝟎. 𝟓)

• 𝐻0 is therefore extremely unlikely – probability < 0.01– and there is very strong evidence against 𝐻0 and in 
favour of 𝐻1. A good way of expressing the result is: ‘we have very strong evidence against the hypothesis that 
the coin is fair (p-value 0.007) and conclude that it is biased against heads’.



P-values14
• Testing does not prove that any hypothesis is true or untrue. Failure to detect a departure from 𝐻0 means that 

there is not enough evidence to justify rejecting 𝐻0 , so 𝐻0 is accepted in this sense only, whilst realising that it 
may not be true. This attitude to the acceptance of 𝐻0 is a feature of the fact that 𝐻0 is usually a precise 
statement, which is almost certainly not exactly true.



Testing the value of a population mean15
 

 



Testing the value of a population variance16
• Situation: random sample, size n, from N(𝜇, 𝜎2) – sample variance 𝑆2.

• For large samples, the test works well even if the population is not normally distributed.



Testing the value of a population proportion17
• Situation: n binomial trials with P(success) = p ; we observe x successes.

• Testing: 𝐻0 ∶ 𝑝 = 𝑝0 .

• Test statistic is X ~ Bin(n,𝑝0 )under 𝐻0 .

• For large n, use the normal approximation to the binomial (with continuity correction), ie use:

• or:



Testing the value of the mean of a Poisson distribution18
• Situation: random sample, size n, from Poi (𝜆) distribution.

• Testing: 𝐻0: 𝜆 = 𝜆0

• Test statistic is sample sum ∑𝑋𝑖~𝑃𝑜𝑖(𝑛𝜆0) under 𝐻0 . In the case where n is small and n𝜆0 is of moderate size,
probabilities can be evaluated directly (or found from tables, if available).

• For large samples (or indeed whenever the Poisson mean is large) a normal approximation can be used for the 
distribution of the sample sum or sample mean. Recall that

• ∑𝑋𝑖~𝑃𝑜𝑖 (𝑛𝜆) → 𝑁(𝑛𝜆, 𝑛𝜆).

 0~𝑵(𝟎, 𝟏) under 𝐻 .

𝑖• or we can use ∑𝑋 , and 𝒊∑𝑿 −𝒏𝝀 𝟎

𝒏𝝀𝟎
0~𝑵 𝟎, 𝟏 𝑢𝑛𝑑𝑒𝑟 𝐻 .

• Using the second version it is easier to incorporate a continuity correction. The first version has continuity
correction 0.5/n , whereas the second version has continuity correction 0.5.



Testing the value of the difference between two population means19



Testing the value of the difference between two population means19
• Large samples: use 𝑆2i to estimate 𝜎2i. We will now use a t distribution.

• Further, the Central Limit Theorem justifies the use of a normal approximation for the distribution of the test 
statistic in sampling from any reasonable populations, so the requirement that we are sampling from normal 
distributions is not necessary when we have large samples.

• Small samples: under the assumption 𝜎2 = 𝜎2(= 𝜎2 say) , this common variance is estimated by 𝑆p2, and the
1 2

1 2test statistic is                       (       which is distributed as t with 𝑛   +n − 2 degrees of freedom under 𝐻o
.

𝒑• Remember that 𝒔𝟐 =



Testing the value of the ratio of two population means20



Testing the value of the difference between two population proportions21

• Both one-sided and two-sided tests can easily be performed on the difference between two binomial 
probabilities – at least for large samples.

• Situation:
𝑛1 (large) trials with P(success) = 𝑝1; observe 𝑥1 successes.
𝑛2 (large) trials with P(success) = 𝑝2 ; observe 𝑥2 successes.

• Testing: 𝐻0: 𝑝1 = 𝑝2

• Test statistic: 0~𝑵(𝟎, 𝟏) under 𝐻 .

 
𝑋1 , 𝑋2𝑛1  𝑛2

and 𝑝Ƹ is the MLE of the common p under the null hypothesis, which is the overall sample proportion,

𝑛1+𝑛2
namely 𝑋1+𝑋2.



Testing the value of the difference between two Poisson means22

• Situation: independent random samples, sizes 𝑛1 and 𝑛2 , from Poi(𝜆1) and Poi(𝜆2) distributions. Considering the 
case in which normal approximations can be used – which is so whenever the sample sizes are large and/or the 
parameter values are large:

• Testing: 𝐻0: 𝜆1 = 𝜆2

• Test statistic: ~𝑵(𝟎, 𝟏) under 𝐻0.
 



Basic test – paired data23
• In testing for a difference between two population means, the use of independent samples can have a major 

drawback. Even if a real difference does exist, the variability among the responses within each sample can be 
large enough to mask it. The random variation within the samples will mask the real difference between the 
populations from which they come.

• One way to control this variability external to the issue in question is to use a pair of responses from each subject, 
and then work with the differences within the pairs. The aim is to remove as far as possible the subject- 
to-subject variation from the analysis, and thus to ‘home in’ on any real difference between the populations.

• Assumption: differences constitute a random sample from a normal distribution.

• Testing: 𝐻0: 𝜇𝐷  =  𝜇1 − 𝜇2    = 𝛿

• Test statistic: 𝒏−𝟏 0~𝒕    under 𝐻 .

• We can use N(0,1) for t, and do not require the ‘normal’ assumption, if n is large.



Tests and confidence intervals24
• There are very close parallels between the inferential methods for tests and confidence intervals. In many 

situations there is a direct link between a confidence interval for a parameter and tests of hypothesised values 
for it.

• A confidence interval for 𝜃 can be regarded as a set of acceptable hypothetical values for 𝜃 , so a value 𝜃0 
contained in the confidence interval should be such that the hypothesis 𝐻0: 𝜃 = 𝜃0 will be accepted in a 
corresponding test. This generally proves to be the case.

• In some situations there is a difference between the manner of construction of the confidence interval and that of 
the construction of the test statistic which is actually used. For example the confidence interval for the difference 
between two proportions (based on normal approximations) is constructed in a different way from that used for 
the test statistic in the corresponding test, where an estimate of a common proportion (under 𝐻0) is used.

• As a result, in this and similar cases there is only an approximate match (albeit a good one) between the 
confidence interval and the corresponding test.



Non-parametric tests25
• The tests we have been considering so far all make assumptions about the distribution of the variables of 

interest within the population. If these assumptions are not correct, then the level of statistical significance can 
be affected.

• It is possible to devise tests which make no distributional assumptions. Such tests are termed non-parametric. 
They have the advantages of being applicable under conditions in which the tests in the previous sections 
should not be used.



Chi-square tests26
• These tests are relevant to category or count data. Each sample value falls into one or other of several 

categories or cells. The test is then based on comparing the frequencies actually observed in the 
categories/cells with the frequencies expected under some hypothesis, using the test statistic

∑
𝒇𝒊 − 𝒆𝒊

𝟐

𝒆𝒊

• where 𝑓𝑖 and 𝑒𝑖 are the observed and expected frequencies respectively in the ith category/cell, and the 
summation is taken over all categories/cells involved. This statistic has, approximately, a chi-square (𝜒2) 
distribution under the hypothesis on the basis of which the expected frequencies were calculated.



Chi-square tests26
Goodness of fit
• This is investigating whether it is reasonable to regard a random sample as coming from a specified 

distribution, ie whether a particular model provides a ‘good fit’ to the data.

Degrees of freedom
• Suppose there are k cells, so k terms in the summation which produces the statistic, and that the sample size is

𝑛 = ∑𝑓𝑖 . The expected frequencies also sum to n, so knowing any k-1 of them automatically gives you the last 
one. There is a dependence built in to the k terms which are added up to produce the statistic – and this is the 
reason why the degrees of freedom of the basic statistic is k-1 and not k.

• Further, for each parameter of the distribution specified by the null hypothesis which must be estimated from 
the observed data, another degree of dependence is introduced in the expected frequencies – for each 
parameter estimated another degree of freedom is lost. The theory behind this assumes that the maximum 
likelihood estimators are used. So the number of degrees of freedom is reduced by the number of parameters 
estimated from the observed data.



Chi-square tests26
The ‘accuracy’ of the chi-square approximation
• The test statistic is only approximately, not exactly, distributed as 𝜒2 . The presence of the expected frequencies

𝑒𝑖 in the denominators of the terms to be added up is important — dividing by very small 𝑒𝑖 values causes the 
resulting terms to be somewhat large and ‘erratic’, and the tail of the distribution of the statistic may not match 
that of the 𝜒2 distribution very well. So, in practice, it is best not to have too many small 𝑒𝑖 values, which can be 
done by combining cells and suffering the consequent loss of information/degrees of freedom. The most common 
recommendation is not to use any 𝑒𝑖 which is less than 5.

• (However, the statistic is more robust than that and in practice a less conservative approach, such as ensuring 
that all 𝑒𝑖 are greater than 1 and that not more than 20% of them are less than 5, may be taken.)



Contingency tables27
• A contingency table is a two-way table of counts obtained when sample items (people, companies, policies, 

claims etc) are classified according to two category variables. The question of interest is whether the two 
classification criteria are independent.

• 𝐻0: the two classification criteria are independent.

• The simple rule for calculating the expected frequency for any cell is then:

𝒓𝒐𝒘 𝒕𝒐𝒕𝒂𝒍 𝐱 𝒄𝒐𝒍𝒖𝒎𝒏 𝒕𝒐𝒕𝒂𝐥
𝐭𝐚𝐛𝐥𝐞 𝐭𝐨𝐭𝐚𝐥

• (ie the proportion of data in row i is 𝑓𝑖. /f so if the criteria are independent, the number expected in cell (i, j) is

(𝑓𝑖. /f ) x 𝑓𝑗 )

• The degrees of freedom associated with a table with r rows and c columns is:

(rc - 1) - (r - 1) - (c - 1) = (r - 1)(c - 1)
• since the column totals and row totals reduce the number of degrees of freedom.

• An important use of this method is with a table of dimension 2 x c (or r x 2 ) which gives a test for differences
among 2 or more population proportions.


