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1 Introduction

Actuaries, statisticians and many other professionals are increasingly engaged in analysing and interpreting
large data sets, in order to determine whether there is any relationship between variables, and to assess the
strength of that relationship. The methods in this and the following three chapters are perhaps more widely
applied than any other statistical methods.

Exploratory data analysis (EDA) is the process of analysing data to gain further insight into the nature of the
data, its patterns and relationships between the variables, before any formal statistical techniques are applied.
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Introduction

» Exploratory data analysis can be used to:

detect any errors (outliers or anomalies) in the data

check the assumptions made by any models or statistical tests

identify the most important/influential variables

develop parsimonious models — that is models that explain the data with the minimum number of
variables necessary

YV VYV
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For numerical data, this process will include the calculation of summary statistics and the use of data
visualisations. Transformation of the original data may be necessary as part of this process.

For a single variable, EDA will involve calculating summary statistics (such as mean, median, quartiles,
standard deviation, IQR and skewness) and drawing suitable diagrams (such as histograms, boxplots,
quantile-quantile (Q-Q) plots and a line chart for time series/ordered data).

For bivariate or multivariate data, EDA will involve calculating the summary statistics for each variable and
calculating correlation coefficients between each pair of variables. Data visualisation will typically involve
scatterplots between each pair of variables.



1 Introduction

» Linear correlation between a pair of variables looks at the strength of the linear relationship between them.

The diagrams below show the various degrees of positive correlation:
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2 Bivariate correlation analysis

In a bivariate correlation analysis the problem of interest is an assessment of the strength of the relationship
between the two variables Y and X ..

In any analysis, it is assumed that measurements (or counts) have been made, and are available, on the
variables, giving us bivariate data (x1,y1), (x2,¥2 ), ., (Xn , Yn)-



2 Bivariate correlation analysis

Data Visualisation

The starting point is always to visualise the data. For bivariate data, the simplest way to do this is to draw a
scatterplot and get a feel for the relationship (if any) between the variables as revealed/suggested by the
data.

We are particularly interested in whether there is a linear relationship between Y, the response (or
dependent) variable, and X, the explanatory (or independent, or regressor) variable. That is the expected
value of Y, for any given value x of X, is a linear function of that value x, ie:

E[Y|x] =a+ Bx

If a linear relationship (even a weak one) is indicated by the data, the methods of Linear Regression can be
used to fit a linear model, with a view to exploiting the relationship between the variables to help estimate
the expected response for a given value of the explanatory variable.



3 Sample correlation coefficients

» The degree of association between the x and y values is summarised by the value of an appropriate

correlation coefficient each of which take values from -1 to +1.

» The coefficient of linear correlation provides a measure of how well a linear regression model explains the

relationship between two variables. The values of r can be interpreted as follows:

Value

Interpretation

The two variables move together in the same direction in a perfect
linear relationship.

The two variables tend to move together in the same direction but
there is not a direct relationship.

The two variables can move in either direction and show no linear
relationship.

The two variables tend to move together in opposite directions but
there is not a direct relationship.

The two variables move together in opposite directions in a perfect
linear relationship.




3 Sample correlation coefficients

» There are three broadly used correlation coefficients: Pearson, Spearman’s rank and Kendall's rank.

» Itis always important in data analysis to note that simply finding a mathematical relationship between
variables tells one nothing in itself about the causality of that relationship or its continuing persistence
through time. Qualitative as well as quantitative analysis is essential before making predictions or taking
action.

« Jumping to a ‘cause and effect’ conclusion — that a change in one variable causes a change in the other — is
a common misinterpretation of correlation coefficients. For example, the correlation may be spurious, or
there may be another variable not part of the analysis that is causal.



4 Pearson’s correlation coefficient

» Pearson'’s correlation coefficient r (also called Pearson’s product-moment correlation coefficient) measures
the strength of linear relationship between two variables and is given by:
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 where:

* Note that Sy, and S, , the sum of squares of x and y respectively, are the sample variances of x and y except
we don't divide by (n -1) . Similarly Sy, is the sample covariance except we don't divide by n.



Spearman’s rank correlation coefficient

« Spearman’s rank correlation coefficient rs measures the strength of monotonic (but not necessarily linear)
relationship between two variables.

« So we are measuring how much they move together but the changes are not necessarily at a constant rate.

« Formally, it is the Pearson correlation coefficient applied to the ranks, r X; ) and r(Y;) , rather than the raw
values, (X;,Y;), of the bivariate data.

» So it just uses their relative sizes in relation to each other. We usually order them from smallest to largest.

- Ifall the X; 's are unique, and separately all of the Y; 's are unique, ie there are no ‘ties’, then this calculation
simplifies to:
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Kendall rank correlation coefficient

Kendall’s rank correlation coefficient T measures the strength of dependence of rank correlation between two
variables.

Like the Spearman rank correlation coefficient, the Kendall rank correlation coefficient considers only the
relative values of the bivariate data, and not their actual values. It is far more intensive from a calculation
viewpoint, however, since it considers the relative values of all possible pairs of bivariate data, not simply the
rank of X; and Y; for a given i.

Any pair of observations (X;,Y;); (X;,Y;) where i # j, is said to be concordant if the ranks for both elements
agree, ieX; > X;andY; >Y;,orX; <X;andY; <Y;; otherwise they are said to be discordant.

Let n. be the number of concordant pairs, and let ng be the number of discordant pairs. Assuming that there

are no ties, the Kendall coefficient 7 is defined as:
ne — Ny

nn—1)/2

T =

The numerator is the difference in the number of concordant and discordant pairs. The denominator is the total
number of combinations of pairing each (X;,Y;) with each (X;,Y;). This could also be defined as n, + ng .

So T can be interpreted as the difference between the probability of these objects being in the same order and
the probability of these objects being in a different order.
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Inference

» Togo further than a mere description/summary of the data, a model is required for the distribution of the
underlying variables (X)Y).

Inference under Pearson’s correlation
» The appropriate model is this: the distribution of (XY ) is bivariate normal, with parameters uy, uy, ox, oy and

p.

» To assess the significance of any calculated r, the sampling distribution of this statistic is needed. The
distribution of r is negatively skewed and has high spread/variability.
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Result 1
Under Hy: p = 0,

rvn—-2
V1-r2
From this result a test of Hyp: p = 0 (the hypothesis of 'no linear relationship’ between the variables) can be
performed by working out the value of r which is ‘significant’ at a given level of testing, or by finding the
probability value of the observed r.

has a t distribution with v = n — 2 degrees of freedom.

Result 2 (Fisher’'s transformation of r)

This is a more general result — it is not restricted to the case p = 0.

If W = —lnii then W has (approximately) a normal distribution with mean —lnﬁ and standard
deviation ——
eviation Nl

This is usually referred to as the Fisher Z transformation (because the resulting z-values are approximately
normal). Accordingly, the letter Z is usually used.

From the result on W, tests of Hy: p = po can be performed. Confidence intervals for u,, and hence for p can
also be found.



7

Inference

Notes:

(a) The bivariate normal assumption.
» The presence of ‘outliers’ — data points far away from the main body of the data — may indicate that the

distributional assumption underlying the above methods is highly questionable.

(b) Influence
« Just as a single observation can have a marked effect on the value of a sample mean and standard deviation,

so a single observation separated from the bulk of the data can have a marked effect on the value of a
sample correlation coefficient.



Inference

Inference under Spearman’s rank correlation

Since we are using ranks rather than the actual data, no assumption is needed about the distribution of X, Y
or (X,Y ), ie it is a non-parametric test.

Under a null hypothesis of no association/no monotonic relationship between X and Y the sampling
distribution of rg can (for small values of n') be determined precisely using permutations. This does not have
the form of a common statistical distribution.

For larger values of n ( >20) we can use Results 1 and 2 from before. The limiting normal distribution will
have a mean 0 and a variance of 1/(n-1).

Recall that Spearman’s rank correlation coefficient is derived by applying Pearson’s correlation coefficient to
the ranks rather than the original data.



Inference

Inference under Kendall’s rank correlation

* Again, since we are using ranks, we have a non-parametric test.

* Under the null hypothesis of independence of X and Y, the sampling distribution of T can be determined
precisely using permutations for small values of n.

» We can carry out a hypothesis test in the same way as described above but calculating n. - ng for each
arrangement. However, again, for large n this will be time consuming.

» For larger values of n (>10), use of the Central Limit Theorem means that an approximate normal distribution
can be used, with mean 0 and variance 2(2n+5)/9n(n-1).



8 Multivariate correlation analysis

» So far, we have only considered bivariate data. In most practical applications, there are many variables to
consider. We now consider the case (X,Y ), where Y remains the variable of interest, but X is now a vector of
possible explanatory variables.

Data visualisation

« Again, the starting point is always to visualise the data. For multivariate cases it is no bother for a computer
package to plot a scattergraph matrix, ie scattergraphs between each pair of variables to make the
relationships between them clear.

Sample correlation coefficient matrix.
« Similarly it is no bother for a computer package to calculate correlation coefficients between each pair of
variables and display them in a matrix.

Inference
» We can carry out tests on the correlation for each pair of variables using the method of Principal Component

Analysis (PCA).



Principal component analysis

Until now we have considered the variables in separate pairs, but in practice the amount of analysis required
in this approach grows exponentially with each additional variable.

Principal component analysis (PCA), also called factor analysis, provides a method for reducing the
dimensionality of the data set, X — in other words, it seeks to identify the key components necessary to model
and understand the data.

For many multivariate datasets there is correlation between each of the variables. This means there is some
‘'overlap’ between the information that each of the variables provide. The technical phrase is that there is
redundancy in the data. PCA gives us a process to remove this overlap.

The idea is that we create new uncorrelated variables, and we should find that only some of these new
variables are needed to explain most of the variability observed in the data. The key thing is that each 'new’
variable is a linear combination of the ‘old’ variables, so if we eliminate any of the new variables we are still
retaining the most important bits of information.



9 Principal component analysis

» We then rewrite the data in terms of these new variables, which are called principle components.

» These components are chosen to be uncorrelated linear combinations of the variables of the data which
maximise the variance.



10 Regression

« If there is a suitably strong enough correlation between the two variables (and there is cause and effect) we
can justifiably calculate a ‘regression line’ which gives the mathematical form of this relationship:

regression line

A ELY|X] = @+ BX
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Regression

Regression analysis is used to assess the nature of the relationship between Y, the response (or dependent)
variable, and X, the explanatory (or independent, or regressor) variable(s).

The values of the response variable (our principal variable of interest) depend on, or are, in part, explained by,
the values of the other variable(s), which is referred to as the explanatory variable(s).

|deally, the values used for the explanatory variable(s) are controlled by the experimenter — (in the analysis
they are in fact assumed to be error-free constants, as opposed to random variables with distributions).

Regression analysis consists of choosing and fitting an appropriate model — usually with a view to estimating
the mean response (ie the mean value of the response variable) for specified values of the explanatory
variable(s). A prediction of the value of an individual response may also be needed.

Let's consider linear relationships for which we assume that the expected value of Y, for any given value x of
X, is a linear function of that value x . For the bivariate case this simplifies to:

ElY|x} = a+ Bx

As always, before selecting and fitting a model, the data must be examined (eg in scatterplots) to see which
types of model (and model assumptions) may or may not be reasonable.



10 Regression

» As always, before selecting and fitting a model, the data must be examined (eg in scatterplots) to see which
types of model (and model assumptions) may or may not be reasonable.

» If a non-linear relationship (or no relationship) between the variables is indicated by the data, then the
methods of analysis discussed here are not applicable for the data as they stand. However a well-chosen
transformation of y (or x, or even both) may bring the data into a form for which these methods are
applicable.
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