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Introduction1

•  Regression analysis is a set of statistical processes for estimating the relationships between a dependent 

variable (often called the 'outcome' or 'response' variable) and one or more independent variables (often 

called 'predictors', 'covariates', 'explanatory variables' or 'features’).

•  The most common form of regression analysis is linear regression, in which one finds the line (or a more 

complex linear combination) that most closely fits the data according to a specific mathematical criterion.

• Regression analysis is primarily used for two conceptually distinct purposes.

➢ First, regression analysis is widely used for prediction and forecasting, where its use has substantial 

overlap with the field of machine learning.

➢ Second, in some situations regression analysis can be used to infer causal relationships between the 

independent and dependent variables. Importantly, regressions by themselves only reveal relationships 

between a dependent variable and a collection of independent variables in a fixed dataset. To use 

regressions for prediction or to infer causal relationships, respectively, a researcher must carefully justify 

why existing relationships have predictive power for a new context or why a relationship between two 

variables has a causal interpretation. The latter is especially important when researchers hope to 

estimate causal relationships using observational data.



Simple Bivariate Linear Model2

Model Specification
• Given a set of n pairs of data (𝑥𝑖 , 𝑦𝑖), i = 1, 2,…,n , the 𝑦𝑖 are regarded as observations of a response variable

𝑌𝑖 . For the purposes of the analysis the 𝑥𝑖 , the values of an explanatory variable, are regarded as constant.

• The simple linear regression model (with one explanatory variable):

• The response variable 𝑌𝑖 is related to the value 𝑥𝑖 by:

𝒀𝒊 = 𝜶 + 𝜷𝒙𝒊 + 𝒆𝒊 𝒊 = 𝟏, 𝟐, … , 𝒏
• where the 𝑒𝑖 are uncorrelated error variables with mean 0 and common variance 𝜎2.

• So 𝐸 𝑒𝑖 = 0, 𝑣𝑎𝑟 𝑒𝑖 = 𝜎2, 𝑖 = 1,2, … , 𝑛

• 𝛽 is the slope parameter, 𝛼 the intercept parameter.

• This is equivalent to saying that y = mx + c , where m is the gradient or slope and c is the intercept ie where 

the line crosses the y-axis.



Simple Bivariate Linear Model2

Fitting the model
• We can estimate the parameters in a regression model using the ‘method of least squares’.

• Fitting the model involves:

(a) estimating the parameters 𝛽 and 𝛼, and

(b) estimating the error variance 𝜎2.

• The fitted regression line, which gives the estimated value of Y for a fixed x, is given by:

• Where 

• These are the equations we use to calculate the ‘best’ values of 𝛼 and 𝛽. They are given in the Tables.



Partitioning the variability of the responses3

• To help understand the ‘goodness of fit’ of the model to the data, the total variation in the responses, as

given by 𝑆𝑦𝑦 =                    should be studied 

Some of the variation in the responses can be attributed to the relationship with x (eg y may tend to be high 

when x is high, low when x is low) and some is random variation (unmodellable) above and beyond that. Just 

how much is attributable to the relationship – or ‘explained by the model’ – is a measure of the goodness of 

fit of the model.



Partitioning the variability of the responses3
• We start from an identity involving 𝑦𝑖 (the observed y value), ത𝑦 (the overall average of the y values) and

ො𝑦𝑖(the ‘predicted’ value of y).

• Squaring and summing both sides of:

• gives:

• the cross-product term vanishing.

• The sum on the left is the ‘total sum of squares’ of the responses, denoted here by 𝑆𝑆𝑇𝑂𝑇.



Partitioning the variability of the responses3
• The second sum on the right is the sum of the squares of the deviations of the fitted responses (the estimates 

of the conditional means) from the overall mean response (the estimate of the overall mean) – it summarises 

the variability accounted for, or ‘explained’ by the model. It is called the ‘regression sum of squares’, denoted 

here by 𝑆𝑆𝑅𝐸𝐺.

• The first sum on the right is the sum of the squares of the estimated errors (response – fitted response, 

generally referred to in statistics as a ‘residual’ from the fit) – it summarises the remaining variability, that 

between the responses and their fitted values and so ‘unexplained’ by the model. It is called the ‘residual sum

𝑅𝐸𝑆 𝒏−𝟐
of squares’, denoted here by 𝑆𝑆 . The estimate of 𝜎2 is based on it – it is 

𝑺𝑺𝑹𝑬𝑺
.



Partitioning the variability of the responses3
• So:

𝑺𝑺𝑻𝑶𝑻 =  𝑺𝑺𝑹𝑬𝑺 + 𝑺𝑺𝑹𝑬𝑮

• Note that 𝑆𝑆𝑅𝐸𝑆 is often also written as 𝑆𝑆𝐸𝑅𝑅 (‘error’).

• For computational purposes 𝑆𝑆𝑇𝑂𝑇 = 𝑆𝑦𝑦 and:

𝑺𝟐

• So 𝑺𝑺𝑹𝑬𝑺 = 𝑺𝒀𝒀 − 𝑿𝒀
𝑺𝑿𝑿



Partitioning the variability of the responses3
• It can then be shown that:

𝑬 𝑺𝑺𝑻𝑶𝑻 = 𝒏 − 𝟏 𝝈𝟐 + 𝜷𝟐𝑺𝑿𝑿 𝑬 𝑺𝑺𝑹𝑬𝑮 = 𝝈𝟐 + 𝜷𝟐𝑺𝑿𝑿
• from which it follows that 𝑬[𝑺𝑺𝑹𝑬𝑺] = 𝒏 − 𝟐 𝝈𝟐 .

• Hence:

• So Ƹ𝜎2 is an unbiased estimator of 𝜎2 .



Partitioning the variability of the responses3
• In the case that the data are ‘close’ to a line (|r| high – a strong linear relationship) the model fits well, the 

fitted responses (the values on the fitted line) are close to the observed responses, and so 𝑆𝑆𝑅𝐸𝐺 is relatively 

high with 𝑆𝑆𝑅𝐸𝑆 relatively low.

• r is referring to Pearson’s correlation coefficient.

•  In the case that the data are not ‘close’ to a line (|r| low – a weak linear relationship) the model does not fit so 

well, the fitted responses are not so close to the observed responses, and so 𝑆𝑆𝑅𝐸𝐺 is relatively low and 𝑆𝑆𝑅𝐸𝑆 

relatively high.

• The proportion of the total variability of the responses ‘explained’ by a model is called the coefficient of

determination, denoted 𝑅2 . Here, the proportion is:

𝑹𝟐 =
𝑺𝑺𝑹𝑬𝑮 = 𝑿𝒀 𝑺𝟐

𝑺𝑺𝑻𝑶𝑻 𝑺𝑿𝑿𝑺𝒀𝒀

• [The value of the proportion 𝑅2 is usually quoted as a percentage].

• 𝑅2 can take values between 0% and 100% inclusive.



The full normal model and inference4
• The model must be specified further in order to make inferences concerning the response based on the fitted 

model. In particular, information on the distribution of the 𝑌𝑖 ’s is required.

• In the full model, we now assume that the errors, 𝑒𝑖 , are independent and identically distributed as N(0,𝜎2) 

variables. This will then allow us to obtain the distributions for 𝛽 and the 𝑌𝑖 ’s. We can then use these to 

construct confidence intervals and carry out statistical inference.

• For the full model the following additional assumptions are made:

• The error variables 𝑒𝑖 are:

(a) independent

(b) normally distributed

• Under this full model, the 𝑒𝑖 ’s are independent, identically distributed random variables, each with a normal 

distribution with mean 0 and variance 𝜎2. It follows that the 𝑌𝑖 ’s are independent, normally distributed 

random variables, with 𝐸 𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 and var 𝑌𝑖 = 𝜎2.



The full normal model and inference4

• ෡𝛽, being a linear combination of independent normal variables, itself has a normal distribution, with mean 

and variance as noted earlier.

• The further results required are:

(1) ෠𝛽 and ෢𝜎2 are independent

(2) 
(𝑛−2)ෝ𝜎2

𝜎2 has a 𝜒2 distribution with v = n -2

• Note: With the full model in place the 𝑌𝑖’s have normal distributions and it is possible to derive maximum 

likelihood estimators of the parameters 𝛼 , , and (since maximum likelihood estimation requires us to know 

the distribution whereas least squares estimation does not). It is possible to show that the maximum 

likelihood estimators of and are the same as the least squares estimates, but the MLE of has a different 

denominator to the least squares estimate.



The full normal model and inference4

Inferences on the slope parameter 𝜷

• To conform to usual practice the distinction between መ𝛽 ,the random variable, and 

its value  መ𝛽 will now be dropped. Only one symbol, namely  መ𝛽 will be used. 

• Using the fact that 𝐸( መ𝛽  = )𝛽 and 𝑣𝑎𝑟 ( መ𝛽) = 
𝜎2

𝑆𝑥𝑥
:

• A = 
෡𝛽−𝛽

𝜎2

𝑆𝑥𝑥

1/2 is a standard normal variable 

• 𝑩= (𝒏−𝟐)
ෝ𝜎2

𝜎2 is a 𝜒2 variable with 𝜈 = 𝑛−2 degrees of freedom



The full normal model and inference4

• Now, since መ𝛽 and 𝜎2 are independent, it follows that 
𝐴

{
𝐵

𝑛−2
}1/2

has a t distribution with 𝜈 = 𝑛 − 2, ie:

• ( መ𝛽 − 𝛽) / se ( መ𝛽) has a t distribution with 𝜈 = 𝑛 − 2 → (Result A)

• where the symbol 𝑠𝑒 ( መ𝛽) denotes the estimated standard error of መ𝛽 , namely(
ෝ𝜎2

𝑆𝑥𝑥
) 1/2

• Result (A) can now be used for the construction of confidence intervals, and for tests, on the value 

of 𝛽 , the slope coefficient in the model. 𝐻0 : 𝛽 = 0 is the ‘no linear relationship’ hypothesis.

• Note that since መ𝛽 =
𝑆𝑥𝑦

𝑆𝑥𝑥
and r = 

𝑆𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
if መ𝛽 = 0 then 𝑆𝑥𝑦 = 0 𝑎𝑛𝑑 𝑟 = 0 𝑡𝑜𝑜.



5 Estimating a mean response and predicting an individual response

= 𝛼 +

(a) Mean response

• If 𝜇0 is the expected (mean) response for a value 𝑥0 of the explanatory variable (ie 𝜇0 = 𝐸 [𝑌 ∣ 𝑥0

𝛽𝑥0),𝜇0 is estimated by Ƹ𝜇0 = ො𝛼 + ෠𝛽𝑥𝑜  ,which is an unbiased

estimator. The variance of the estimator is given by:

• The distribution actually used is a 𝑡 distribution - the argument is similar to that described earlier:

𝝁𝟎 − 𝝁𝟎  /𝐬𝐞 𝝁𝟎 has a 𝑡 distribution with 𝑣 = 𝑛 − 2 – Result A

• where se 𝜇ƶ0 denotes the estimated standard error of the estimate, namely:

• Result A can be used for the construction of confidence intervals for the value of the expected response when

𝑥 = 𝑥0.



5 Estimating a mean response and predicting an individual response

(b) Individual response

• Rather than estimating an expected response 𝐸 𝑌 ∣ 𝑥0 an estimate, or prediction, of an individual response

𝑦0 (for 𝑥 = 𝑥0 ) is sometimes required. The actual estimate is the same as in (a), namely:

• but the uncertainty associated with this estimator (as measured by the variance) is greater than in (a) since 

the value of an individual response 𝑦0 rather than the more 'stable' mean response is required. To cater for 

the extra variation of an individual response about the mean, an extra term 𝜎2 has to be added into the 

expression for the variance of the estimator of a mean response.

• In other words, the variance of the individual response estimator is:



5 Estimating a mean response and predicting an individual response

• The result is:

has a 𝑡 distribution with 𝑣 = 𝑛 − 2 – Result B

• where denotes the estimated standard error of the estimate, namely:

• Result B can then be used for the construction of confidence intervals (or prediction intervals) for the value of 

a response when 𝑥 = 𝑥0.

• The resulting interval for an individual response 𝑦0 is wider than the corresponding interval for the mean 

response 𝜇0.

• Recall that for an individual response value we have 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖, which is the regression line 𝛼 + 𝛽𝑥𝑖
plus an error term, 𝑒𝑖. Since 𝑒𝑖 ∼ 𝑁 0,𝜎2 an individual point is on the regression line on average - hence we 

have the same estimate ො𝛼 + ෠𝛽𝑥𝑜, as for the mean response. However, we can see that there is an additional 𝜎2 

for the variance.



Checking the model6
• The residual from the fit at 𝑥𝑖 is the estimated error, the difference between the response 𝑦𝑖 and the fitted

value 𝑖𝑒:

residual at 𝑥𝑖 is Ƹ𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖

• By examining the residuals it is possible to investigate the validity of the assumptions in the model about (i)

the true errors 𝑒𝑖 (which are assumed to be independent normal variables with means 0 and the same variance

𝜎2 ), and (ii) the nature of the relationship between the response and explanatory variables.

• Plotting the residuals along a line may suggest a departure from normality for the error distribution. The

sizes of the residuals should also be looked at, bearing in mind that the value of 𝜎 estimates the standard

deviation of the error distribution.

• Ideally we would expect the residuals to be symmetrical about 0 and no more than 3 standard deviations

from it. So skewed residuals or outliers would indicate non-normality.

• Alternatively a quantile-quantile (Q-Q) plot of the residuals against a normal distribution should form a

straight line. They are far superior to dotplots.

• Scatter plots of the residuals against the values of the explanatory variable (or against the values of the fitted

responses) are also most informative. If the residuals do not have a random scatter - if there is a pattern -

then this suggests an inadequacy in the model.



Extending the scope of the linear model7
• In certain 'growth models' the appropriate model is that the expected response is related to the explanatory 

value through an exponential function

𝑬 𝒀𝒊 ∣ 𝒙𝒊 = 𝜶𝐞𝐱𝐩 𝜷𝒙𝒊  .

• In such a case the response data can be transformed using 𝑤𝑖 = log 𝑦𝑖 and the linear model:

𝑾𝒊 = 𝜼 + 𝜷𝒙𝒊 + 𝒆𝒊( where 𝜼 = 𝐥𝐨𝐠 𝜶)

• is then fitted to the data 𝑥𝑖, 𝑤𝑖 . The fact that the error structure is additive in this representation implies that 

it plays a multiplicative role in the original form of the model. If such a structure is considered invalid, 

different methods from those covered in this chapter would have to be used.



The multiple linear regression model8

Introduction

•  We will now extend our linear regression model. Previously we examined the relationship between Y , the 

response (or dependent) variable and one explanatory (or independent or regressor) variable X . We now 

look at k explanatory variables, 𝑋1, 𝑋2, … , 𝑋𝑘.

• There are many problems where one variable can quite accurately be predicted in terms of another. However, 

the use of additional relevant information should improve predictions. There are many different formulae 

used to express regression relationships between more than two variables. Most are of the form:

𝑬 𝒀 𝑿𝟏, 𝑿𝟐, … 𝑿𝒌 = 𝜶 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + ⋯ + 𝜷𝒌𝒙𝒌

• As with the simple linear regression model discussed earlier Y is a random variable whose values are to be 

predicted in terms of given data values 𝑥1, 𝑥2 , … , 𝑥𝑘.

• 𝛽1, 𝛽2, … , 𝛽𝑘 are known as the multiple regression coefficients. They are numerical constants which can be 

determined from observed data.



The multiple linear regression model8

Fitting the model

• As for the simple linear model, the multiple regression coefficients are usually estimated by the method of 

least squares.

• The response variable 𝑌𝑖 is related to the values 𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑘 by

𝒀𝒊 = 𝜶 + 𝜷𝟏𝒙𝒊𝟏 + 𝜷𝟐𝒙𝒊𝟐 + ⋯ + 𝜷𝒌𝒙𝒊𝒌 + 𝒆𝒊 𝒊 = 𝟏, … , 𝒏

• and so the least squares estimates of 𝛼, 𝛽1, 𝛽2, … , 𝛽𝑘 are the values for which:

𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑑

• As for the simple linear model, to find the estimates the above is differentiated partially with respect to 𝛼 and

𝛽1, 𝛽2, … , 𝛽𝑘 in turn and the results are equated to zero.



𝑹𝟐 in the multiple regression case9
• In the bivariate case we noted that the proportion of the total variation of the responses ‘explained’ by a 

model, called the coefficient of determination, denoted 𝑅2 , was equal to the square of the correlation 

coefficient between the dependent variable Y and the single independent variable X.

• In the case of multiple regression with a single dependent variable, Y, and several independent variables,

𝑥1, 𝑥2, … , 𝑥𝑘, 𝑅2 measures the proportion of the total variation in Y ‘explained’ by the combination of

explanatory variables in the model.

• The value of 𝑅2 lies between 0 and 1. It will generally increase (and cannot decrease) as the number of 

explanatory variables k increases. If 𝑅2 =1 the model perfectly predicts the values of Y:

• 100% of the variation in Y is “explained” by variation in 𝑥1, 𝑥2 , … , 𝑥𝑘 .

• Because 𝑅2 cannot decrease as more explanatory variables are added to the model, if it is used alone to 

assess the adequacy of the model, there will always be a tendency to add more explanatory variables. 

However, these may increase the value of 𝑅2 by a small amount, while adding to the complexity of the model. 

Increased complexity is generally considered to be undesirable.



𝑹𝟐 in the multiple regression case9
• To take account of the undesirability of increased complexity, computer packages will often quote an 

‘adjusted 𝑅2 ’ statistic. This is a correction of the 𝑅2 statistic which is based on the mean square errors (ie the 

residual mean sum of squares, 𝑀𝑆𝑆𝑅𝐸𝑆 ) and takes account of the number of predictors, k, and the number of 

data points the model is based on. If we have k predictors, and n observations:

𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅 𝑹𝟐  = 𝟏 − 
𝑴𝑺𝑺𝑹𝑬𝑺 = 𝟏 −

𝒏 − 𝟏

𝑴𝑺𝑺𝑻𝑶𝑻 𝒏 − 𝒌 − 𝟏
(𝟏 − 𝑹𝟐)

• So 𝑀𝑆𝑆𝑅𝐸𝑆 /𝑀𝑆𝑆𝑇𝑂𝑇 would give a measure of how much variability is explained by the residuals (or errors) and 

takes values between 0 and 1. Hence 1 - 𝑀𝑆𝑆𝑅𝐸𝑆 /𝑀𝑆𝑆𝑇𝑂𝑇 would give a measure of how much variability is 

explained by the regression model. Therefore it is similar measure to the original coefficient of determination,

𝑅2.

• Recall that the mean sum of squares (MSS) is the sum of squares divided by the degrees of freedom. So

𝑀𝑆𝑆𝑅𝐸𝑆 = 𝑆𝑆𝑅𝐸𝑆/(𝑛 − 𝑘 − 1) and 𝑀𝑆𝑆𝑇𝑂𝑇 = 𝑆𝑆𝑇𝑂𝑇/(𝑛 − 1) .

• The model which maximises the ‘adjusted 𝑅2 ’ statistics can be regarded in some sense as the ‘best’ model. 

Note, however, that the ‘adjusted 𝑅2 ’ cannot be interpreted as the proportion of the variation in Y which is 

‘explained’ by variation in the 𝑥1, 𝑥2, … , 𝑥𝑘.
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The full normal model

• Again, to make inferences concerning the responses based on the fitted model, we need to specify the model 

further. We make the same assumptions as for the linear model:

• In the full model, we now assume that the errors, 𝑒𝑖 , are independent and identically distributed

𝑁(0, 𝜎2) random variables. This will then allow us to obtain the distributions for 𝛽 and the 𝑌𝑖 ’s.

• We can then use these to construct confidence intervals and carry out statistical inference. The error variables

𝑒𝑖 are: (a) independent, and (b) normally distributed.

• Under this full model, the 𝑒𝑖 ’s are independent, identically distributed random variables, each with a normal 

distribution with mean 0 and variance 𝜎2. It follows that the 𝑌𝑖 ’s are independent, normally distributed 

random variables, with:

𝑬 𝒀𝒊 = 𝜶 + 𝜷𝟏𝒙𝒊𝟏 + 𝜷𝟐𝒙𝒊𝟐 + ⋯ + 𝜷𝒌𝒙𝒊𝒌 𝒂𝒏𝒅 𝒗𝒂𝒓 𝒀𝒊 = 𝝈𝟐

• This mimics the bivariate linear regression model but with the mean dependent on k explanatory variables.



The full normal model and inference10

Testing hypotheses on individual covariates

• In multiple regression the coefficients 𝛽1, 𝛽2, … , 𝛽𝑘 describe the effect of each explanatory variable on the 

dependent variable Y after controlling for the effects of other explanatory variables in the model.

• Each coefficient 𝛽𝑗 measures the increase in the value of the response variable y for a corresponding increase

in the value of 𝑥𝑗 independent of the other covariates.

• As in the bivariate case, hypotheses about the values of 𝛽1, 𝛽2, … , 𝛽𝑘 can be tested, notably the hypothesis

𝛽𝑖 = 0 which states that, after controlling for the effects of other variables, the variable 𝑥𝑖 has ‘no linear 

relationship’ with Y.

• Recall that in the bivariate case a hypothesis of 𝛽 = 0 was equivalent to 𝜌 = 0.

• Generally speaking, it is not useful to include in a multiple regression model a covariate 𝑥𝑖 for which we 

cannot reject the hypothesis that 𝛽𝑖 = 0.



11 Estimating a mean response and predicting an individual response

Mean response

• The whole point of the modelling exercise is so that we can estimate values of the response variable Y given 

the input variables 𝑥1, 𝑥2, … , 𝑥𝑘.

• Mean response

• As with the linear model we can estimate the expected (mean) response, 𝜇0, for a multiple linear regression 

model given a vector of explanatory variables, 𝑥0.

𝝁𝟎 = 𝑬 𝒀 𝒙𝟎 = 𝜶 + 𝜷𝟏𝒙𝟎𝟏 + 𝜷𝟐𝒙𝟎𝟐 + ⋯ + 𝜷𝒌𝒙𝟎𝒌

• 𝜇0 is estimated by which is an unbiased estimator.

• Recall that our multivariate linear regression model stated that the 𝑌𝑖 ’s are independent, normally distributed 

random variables, with 𝐸 𝑌𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝐵𝑘𝑥_𝑖𝑘. We have simply used this expected value to 

obtain an estimated mean response corresponding to the vector 𝑥0.

• We are using vector notation here:

𝒙𝟎 = (𝒙𝟎𝟏, 𝒙𝟎𝟐, … , 𝒙𝟎𝒌)
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