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Introduction

« Regression analysis is a set of statistical processes for estimating the relationships between a dependent

variable (often called the 'outcome’ or 'response’ variable) and one or more independent variables (often
called 'predictors’, ‘covariates', 'explanatory variables' or 'features’).

« The most common form of regression analysis is linear regression, in which one finds the line (or a more

complex linear combination) that most closely fits the data according to a specific mathematical criterion.

» Regression analysis is primarily used for two conceptually distinct purposes.

> First, regression analysis is widely used for prediction and forecasting, where its use has substantial
overlap with the field of machine learning.

» Second, in some situations regression analysis can be used to infer causal relationships between the
independent and dependent variables. Importantly, regressions by themselves only reveal relationships
between a dependent variable and a collection of independent variables in a fixed dataset. To use
regressions for prediction or to infer causal relationships, respectively, a researcher must carefully justify
why existing relationships have predictive power for a new context or why a relationship between two
variables has a causal interpretation. The latter is especially important when researchers hope to
estimate causal relationships using observational data.



Simple Bivariate Linear Model

Model Specification

Given a set of n pairs of data (x; ,y;), 1 =1, 2,...n, the y; are regarded as observations of a response variable
Y; . For the purposes of the analysis the x; , the values of an explanatory variable, are regarded as constant.

* The simple linear regression model (with one explanatory variable):
« The response variable Y; is related to the value x; by:
Yi=a+Bx;+e; =12 ..,n
« where the e; are uncorrelated error variables with mean 0 and common variance o2.
« SoEle] =0,var[e;] =0%i=12,..,n

* B is the slope parameter, a the intercept parameter.

« This is equivalent to saying that y = mx + ¢, where m is the gradient or slope and c is the intercept ie where
the line crosses the y-axis.



Simple Bivariate Linear Model

Fitting the model

We can estimate the parameters in a regression model using the ‘method of least squares.

Fitting the model involves:
(a) estimating the parameters 8 and «, and
(b) estimating the error variance a2.

The fitted regression line, which gives the estimated value of Y for a fixed x, is given by:
y=a+pBx

S _
whereﬁ=s—xy and@=y —BX%
XX

These are the equations we use to calculate the ‘best’ values of @ and . They are given in the Tables.



3 Partitioning the variability of the responses

To help understand the ‘goodness of fit" of the model to the data, the total variation in the responses, as
given by Sy, = ¥ (y; — ¥)? should be studied.

Some of the variation in the responses can be attributed to the relationship with x (eg y may tend to be high
when x is high, low when x is low) and some is random variation (unmodellable) above and beyond that. Just
how much is attributable to the relationship — or ‘explained by the model’ — is a measure of the goodness of
fit of the model.



Partitioning the variability of the responses

We start from an identity involving y; (the observed y value), y (the overall average of the y values) and
y; (the ‘predicted’ value of y).

Squaring and summing both sides of:
Yi=¥y=0i=¥y)+Oi—Y)

gives:
Y@ =¥ =20 —¥)* + X0 - ¥)°
the cross-product term vanishing.

The sum on the left is the ‘total sum of squares’ of the responses, denoted here by SSror.



3 Partitioning the variability of the responses

The second sum on the right is the sum of the squares of the deviations of the fitted responses (the estimates
of the conditional means) from the overall mean response (the estimate of the overall mean) — it summarises

the variability accounted for, or ‘explained’ by the model. It is called the ‘regression sum of squares’, denoted
here by SSggc-

The first sum on the right is the sum of the squares of the estimated errors (response — fitted response,
generally referred to in statistics as a ‘residual’ from the fit) — it summarises the remaining variability, that
between the responses and their fitted values and so ‘unexplained’ by the model. It is called the ‘residual sum
SSRES

Y

of squares’, denoted here by SSggs . The estimate of 62 is based on it — it is



3 Partitioning the variability of the responses

So:

SStor = SSrEs + SSRrEc
Note that SSzs is often also written as SSgzg (‘error’).

For computational purposes SSror = Syy and:
2
~ | B ~  5=\12 _ % Sxy
SSrec = X(@+ Bx;) — (@ + Bx)|” = B?Syx = o—

 Sxx

The last step uses the fact that § = Syy/Sxx-

_ Sy
So SSRES — Syy - g



3 Partitioning the variability of the responses

* |t can then be shown that:
E[SStor] = (n—1)0* + B*Sxx  E[SSgecl = 6% + B*Sxx
« from which it follows that E[SSggs] = (n — 2)a?.

* Hence:
1 S%v SSrES 1 (n — 2)o?
E|6?| = E|——( Syy — — =E[ = ——E[SS = = ¢*
&°] n—2< vy SXX)] n—2l n—zESSkesl =
« So 672 is an unbiased estimator of ¢?2 .




Partitioning the variability of the responses

» In the case that the data are ‘close’ to a line (|r| high — a strong linear relationship) the model fits well, the
fitted responses (the values on the fitted line) are close to the observed responses, and so SSpg¢ Is relatively
high with SSzg relatively low.

« risreferring to Pearson’s correlation coefficient.

* In the case that the data are not ‘close’ to a line (|r] low — a weak linear relationship) the model does not fit so
well, the fitted responses are not so close to the observed responses, and so SSgg( is relatively low and SSggs
relatively high.

» The proportion of the total variability of the responses ‘explained’ by a model is called the coefficient of
determination, denoted R? . Here, the proportion is:

_ SSgec  Sxv

R? = =
SSTOT SXXSYY

« [The value of the proportion R? is usually quoted as a percentage].
« R? can take values between 0% and 100% inclusive.



The full normal model and inference

The model must be specified further in order to make inferences concerning the response based on the fitted
model. In particular, information on the distribution of the Y;'s is required.

In the full model, we now assume that the errors, ¢; , are independent and identically distributed as N(0,52)
variables. This will then allow us to obtain the distributions for  and the Y;'s. We can then use these to
construct confidence intervals and carry out statistical inference.

For the full model the following additional assumptions are made:
The error variables e; are:

(a) independent

(b) normally distributed

Under this full model, the e;’s are independent, identically distributed random variables, each with a normal
distribution with mean 0 and variance 2. It follows that the Y;'s are independent, normally distributed
random variables, with E[Y;] = a + Bx; and var[Y;] = o2.



4 The full normal model and inference

B, being a linear combination of independent normal variables, itself has a normal distribution, with mean
and variance as noted earlier.

The further results required are:

(1) B and #2are independent

_\a2
(2) (n 022)0 has a y? distribution with v = n — 2.

Note: With the full model in place the Y;'s have normal distributions and it is possible to derive maximum
likelihood estimators of the parameters a , , and (since maximum likelihood estimation requires us to know
the distribution whereas least squares estimation does not). It is possible to show that the maximum
likelihood estimators of and are the same as the least squares estimates, but the MLE of has a different
denominator to the least squares estimate.



4 The full normal model and inference

Inferences on the slope parameter g8

To conform to usual practice the distinction between B, the random variable, and its value 8, will now be
dropped. Only one symbol, namely 8 will be used.

Using the fact that E(8) = g and var (B) = 02 /Sxx:
° A — B_B

T is a standard normal variable
()
<Sxx>

s B=(n- 2)32/0'2 is a y2 variable with v = n — 2 degrees of freedom



The full normal model and inference

. ~ . . A L . . .
- Now, since 8 and 62 are independent, it follows that — iz has a t distribution withv =n — 2, ie:

n-2
» (B —PB)/se(P) has a t distribution withv =n —2 > (Result A)
52\ 1/2

« where the symbol se(f) denotes the estimated standard error of § , namely (S—)
XX

* Result (A) can now be used for the construction of confidence intervals, and for tests, on the value of 8, the
slope coefficient in the model. Hy: f = 0 is the 'no linear relationship’ hypothesis.

. Note thatsince f =22 andr = —=2.— if § = 0 then Syy =0 and r = 0 too.

Sxx VSxxSyy
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5 Estimating a mean response and predicting an individual response

(a) Mean response

If u, is the expected (mean) response for a value x, of the explanatory variable (ie uy, = E[Y | xo] = a +
Bxo), Uo is estimated by fi, = & + Bx,, which is an unbiased estimator.
The variance of the estimator is given by:

1 (xg—X)*?

var(fiy) = {— + }0'2

n S.x

The distribution actually used is a t distribution - the argument is similar to that described earlier:
(Mo — o) /se[ug] has a t distribution with v = n — 2 — Result A

where se[fl,] denotes the estimated standard error of the estimate, namely:

1

— ¥)2 2
selio] = [{1 T X }azr

n S x

Result A can be used for the construction of confidence intervals for the value of the expected response when
X = Xg.
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5 Estimating a mean response and predicting an individual response

(b) Individual response

« Rather than estimating an expected response E[Y | x,] an estimate, or prediction, of an individual response
yo (for x = x; ) is sometimes required. The actual estimate is the same as in (a), namely:

Yo =&+ Bxg
* but the uncertainty associated with this estimator (as measured by the variance) is greater than in (a) since
the value of an individual response y, rather than the more 'stable’ mean response is required. To cater for

the extra variation of an individual response about the mean, an extra term ¢ has to be added into the
expression for the variance of the estimator of a mean response.

* In other words, the variance of the individual response estimator is:

(xO - i)z 2
o
Sxx

1
var(yq) = {1 + - +
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Estimating a mean response and predicting an individual response

The result is:;
(¥ — yo)/se[Vo] has a t distribution with v = n — 2 — Result B

where se[y,] denotes the estimated standard error of the estimate, namely:

2 1/2
se[yo] = [{1 + % + (X — %) }02]

Sxx

Result B can then be used for the construction of confidence intervals (or prediction intervals) for the value of
a response when x = x,.

The resulting interval for an individual response y, is wider than the corresponding interval for the mean
response L.

Recall that for an individual response value we have y; = a + fx; + e;, which is the regression line a + Bx;
plus an error term, e;. Since e; ~ N(0,52) an individual point is on the regression line on average - hence we
have the same estimate & + B, as for the mean response. However, we can see that there is an additional o2
for the variance.



Checking the model

The residual from the fit at x; is the estimated error, the difference between the response y; and the fitted
value ie:

residual at x; is é; = y; — ¥;

By examining the residuals it is possible to investigate the validity of the assumptions in the model about (i)
the true errors e; (which are assumed to be independent normal variables with means 0 and the same
variance ¢ ), and (ii) the nature of the relationship between the response and explanatory variables.

Plotting the residuals along a line may suggest a departure from normality for the error distribution. The
sizes of the residuals should also be looked at, bearing in mind that the value of ¢ estimates the standard
deviation of the error distribution.

ldeally we would expect the residuals to be symmetrical about 0 and no more than 3 standard deviations
from it. So skewed residuals or outliers would indicate non-normality.

Alternatively a quantile-quantile (Q-Q) plot of the residuals against a normal distribution should form a
straight line. They are far superior to dotplots.

Scatter plots of the residuals against the values of the explanatory variable (or against the values of the fitted
responses) are also most informative. If the residuals do not have a random scatter - if there is a pattern -
then this suggests an inadequacy in the model.



7 EXxtending the scope of the linear model

* In certain 'growth models' the appropriate model is that the expected response is related to the explanatory
value through an exponential function

ElY; | x;] = aexp(Bx;).

» Insuch a case the response data can be transformed using w; = logy; and the linear model:
W;=n+ Bx; + e;( where n = log a)

« is then fitted to the data (x;, w;). The fact that the error structure is additive in this representation implies that
it plays a multiplicative role in the original form of the model. If such a structure is considered invalid,
different methods from those covered in this chapter would have to be used.



8 The multiple linear regression model

Introduction

We will now extend our linear regression model. Previously we examined the relationship between Y, the
response (or dependent) variable and one explanatory (or independent or regressor) variable X . We now
look at k explanatory variables, X, X5, ..., Xk.

There are many problems where one variable can quite accurately be predicted in terms of another. However,
the use of additional relevant information should improve predictions. There are many different formulae
used to express regression relationships between more than two variables. Most are of the form:

E[Y|Xy, X3, .. Xkl = a+ B1x1 + Boxz + -+ Brxg

As with the simple linear regression model discussed earlier Y is a random variable whose values are to be
predicted in terms of given data values x4, x5 , ..., xi.

B1, B2, -, Bx are known as the multiple regression coefficients. They are numerical constants which can be
determined from observed data.



8 The multiple linear regression model

Fitting the model

As for the simple linear model, the multiple regression coefficients are usually estimated by the method of
least squares.

The response variable Y; is related to the values x;q, x5, ... xix by
Y,-=a+B1x,-1+ﬂzx,~2+~-+ﬁkx,-k+ei i=1, ., n

and so the least squares estimates of a, 81, 85, ..., Bk are the values &, 31, 3,, ..., Bx for which:

n n
q= Z el = z[Yi —(a+ B1xi1 + Baxiz + -+ Brxy)]?  is minimised
i=1 i=1

As for the simple linear model, to find the estimates the above is differentiated partially with respect to @ and
B1, B2, -, B In turn and the results are equated to zero.



R? in the multiple regression case

In the bivariate case we noted that the proportion of the total variation of the responses ‘explained’ by a
model, called the coefficient of determination, denoted R? , was equal to the square of the correlation
coefficient between the dependent variable Y and the single independent variable X.

In the case of multiple regression with a single dependent variable, Y, and several independent variables,
X1,X3, ...,Xk, R? measures the proportion of the total variation in Y ‘explained’ by the combination of
explanatory variables in the model.

The value of R? lies between 0 and 1. It will generally increase (and cannot decrease) as the number of
explanatory variables k increases. If R? =1 the model perfectly predicts the values of Y:

100% of the variation in Y is “explained” by variation in x4, x5 , ..., X .

Because R? cannot decrease as more explanatory variables are added to the model|, if it is used alone to
assess the adequacy of the model, there will always be a tendency to add more explanatory variables.
However, these may increase the value of R? by a small amount, while adding to the complexity of the model.
Increased complexity is generally considered to be undesirable.



R? in the multiple regression case

To take account of the undesirability of increased complexity, computer packages will often quote an
‘adjusted R? ' statistic. This is a correction of the R? statistic which is based on the mean square errors (ie the
residual mean sum of squares, MSSzgs ) and takes account of the number of predictors, k, and the number of
data points the model is based on. If we have k predictors, and n observations:

MSSRES n—l
Adjusted R? =1 - ———2=1 — 1 — R?
juste MSS7or (n—k— 1)( )

SO MSSgpps/MSSror would give a measure of how much variability is explained by the residuals (or errors) and
takes values between 0 and 1. Hence 1 - MSSggs/MSSror would give a measure of how much variability is

explained by the regression model. Therefore it is similar measure to the original coefficient of determination,
RZ.

Recall that the mean sum of squares (MSS) is the sum of squares divided by the degrees of freedom. So
MSSRES = SSRES/(n — k — 1) and MSSTOT = SSTOT/(TL — 1) .

The model which maximises the ‘adjusted R? ' statistics can be regarded in some sense as the ‘best’ model.
Note, however, that the ‘adjusted R? ' cannot be interpreted as the proportion of the variation in Y which is
‘explained’ by variation in the x4, x5, ..., x.



10

The full normal model and inference

The full normal model

Again, to make inferences concerning the responses based on the fitted model, we need to specify the model
further. We make the same assumptions as for the linear model:

In the full model, we now assume that the errors, e; , are independent and identically distributed
N (0, o) random variables. This will then allow us to obtain the distributions for g and the Y; ’s.

We can then use these to construct confidence intervals and carry out statistical inference. The error variables
e; are: (a) independent, and (b) normally distributed.

Under this full model, the e; ‘s are independent, identically distributed random variables, each with a normal
distribution with mean 0 and variance 2. It follows that the Y; ‘s are independent, normally distributed
random variables, with:

E[Y;] = a+ Bixj1 + B2x2 + -+ Brxi; and varlY;] = o>

This mimics the bivariate linear regression model but with the mean dependent on k explanatory variables.



10

The full normal model and inference

Testing hypotheses on individual covariates

In multiple regression the coefficients £, B, ..., Bx describe the effect of each explanatory variable on the
dependent variable Y after controlling for the effects of other explanatory variables in the model.

Each coefficient §; measures the increase in the value of the response variable y for a corresponding increase
in the value of x; independent of the other covariates.

As in the bivariate case, hypotheses about the values of 4, 52, ..., Bx can be tested, notably the hypothesis
B; = 0 which states that, after controlling for the effects of other variables, the variable x; has 'no linear
relationship’ with Y.

Recall that in the bivariate case a hypothesis of § = 0 was equivalent to p = 0.

Generally speaking, it is not useful to include in a multiple regression model a covariate x; for which we
cannot reject the hypothesis that 5; = 0.
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Estimating a mean response and predicting an individual response

Mean response

» The whole point of the modelling exercise is so that we can estimate values of the response variable Y given
the input variables x4, x5, ..., xk.

* Mean response

« As with the linear model we can estimate the expected (mean) response, u,, for a multiple linear regression
model given a vector of explanatory variables, x,.

1o = E|Y|xo] = @ + B1xo1 + B2X0z + - + BiXok
* U is estimated by fig = @ + B1x01 + B2xoz + -+ + BrXor Which is an unbiased estimator.

» Recall that our multivariate linear regression model stated that the Y;'s are independent, normally distributed
random variables, with E[Y;] = a + B1x;1 + B2x;2 + -+ + Birx_ik. We have simply used this expected value to
obtain an estimated mean response corresponding to the vector x,.

» We are using vector notation here:

X9 = (X01,X02) -+ » Xok)
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11 Estimating a mean response and predicting an individual response

Individual response

Similarly, we could predict an individual response y, (for x = x,) using the same estimate y, = @ + ;%01 +
Byxop + -+ + BrXor but with an extra o2 in the expression for the variance of the estimator compared to the
mean response.

Recall that for an individual response value we have y; = a + B1xi1 + B2Xiz + - + Brxjr + e;. Each individual
response value is associated with an error term from the regression line. Since e; ~ N(0,6%) an individual
point is on the regression line on average — hence we have the same estimate & + 5;xo1 + f2X02 + = + BiXox
as for the mean response. However, there is an additional o2 for the variance.



Thank You!



