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Origins and Uses of Probability 1

• The theory of probability began with the study of games of chance such as poker. Predictions take the form 

of probabilities.

• To predict the likelihood of an earthquake, of rain, or whether you will get an A in this course, we use 

probabilities.

• Doctors use probability to determine the chance of a vaccination causing the disease the vaccination is 

supposed to prevent.

• A stockbroker uses probability to determine the rate of return on a client’s investments.

• You might use probability to decide to buy a lottery ticket or not.

• In your study of statistics, you will use the power of mathematics through probability calculations to analyze 

and interpret your data.



What is Probability?2

• The oldest way of defining probabilities, the classical probability concept, applies when all possible outcomes 

are equally likely, as is presumably the case in most games of chance.

• We can then say that if there are N equally likely possibilities, of which one must occur and n are regarded as 

favorable, or as a “success,” then the probability of a “success” is given by the ratio 
𝒏

𝑵
. 

• Although equally likely possibilities are found mostly in games of chance, the classical probability concept 

applies also in a great variety of situations where gambling devices are used to make random selections—

when office space is assigned to teaching assistants by lot, when some of the families in a township are 

chosen in such a way that each one has the same chance of being included in a sample study, when machine 

parts are chosen for inspection so that each part produced has the same chance of being selected, and so 

forth.

• A major shortcoming of the classical probability concept is its limited applicability, for there are many 

situations in which the possibilities that arise cannot all be regarded as equally likely. This would be the case, 

for instance, if we are concerned with the question whether it will rain on a given day, if we are concerned 

with the outcome of an election, or if we are concerned with a person’s recovery from a disease.



Example
What is the probability of drawing an ace from an ordinary deck of 52 playing cards?

Solution:

Since there are n = 4 aces among the N = 52 cards, the probability of drawing an ace is  
𝟒

𝟓𝟐
=

𝟏

𝟏𝟑
 .

(It is assumed, of course, that each card has the same chance of being drawn.)



Concepts of Probability3

• Since all probabilities pertain to the occurrence or nonoccurrence of events, let us explain first what we mean 

here by event and by the related terms experiment, outcome, and sample space.

• It is customary in statistics to refer to any process of observation or measurement as an experiment. In this 

sense, an experiment may consist of the simple process of checking whether a switch is turned on or off; it 

may consist of counting the imperfections in a piece of cloth; or it may consist of the very complicated 

process of determining the mass of an electron.

• The results one obtains from an experiment, whether they are instrument readings, counts, “yes” or “no” 

answers, or values obtained through extensive calculations, are called the outcomes of the experiment.



Sample Space4

• If a sample space has a finite number of elements, we may list the elements in the usual set notation; for 

instance, the sample space for the possible outcomes of one flip of a coin may be written as : S = {H, T}

where H and T stand for head and tail.

• Sample spaces with a large or infinite number of elements are best described by a statement or rule; for 

example, if the possible outcomes of an experiment are the set of automobiles equipped with satellite radios, 

the sample space may be written S = {x|x is an automobile with a satellite radio}

• This is read “S is the set of all x such that x is an automobile with a satellite radio.” Similarly, if S is the set of 

odd positive integers, we write S = {2k+1|k = 0, 1, 2, . . .}

• How we formulate the sample space for a given situation will depend on the problem at hand. If an 

experiment consists of one roll of a die and we are interested in which face is turned up, we would use the 

sample space : S = {1,2,3,4,5,6}

• It is desirable to use sample spaces whose elements cannot be divided (partitioned or separated) into more 

primitive or more elementary kinds of outcomes. In other words, it is preferable that an element of a sample 

space not represent two or more outcomes that are distinguishable in some way.

The set of all possible outcomes of an experiment is called the sample space and it is usually denoted by the 

letter S. Each outcome in a sample space is called an element of the sample space, or simply a sample point.



Example
Describe a sample space that might be appropriate for an experiment in which we roll a pair of dice, one red and 

one green. (The different colors are used to emphasize that the dice are distinct from one another.)

Solution:

The sample space that provides the most information consists of the 36 points given by

𝑆1 = {(x, y)|x = 1, 2, . . . , 6; y = 1, 2, . . . , 6}

where x represents the number turned up by the red die and y represents the number turned up by the green die. 

A second sample space, adequate for most purposes (though less desirable in general as it provides less 

information), is given by

𝑆2 = {2, 3, 4, . . . , 12}

where the elements are the totals of the numbers turned up by the two dice.



Event5

• An event (outcome or result) can be identified with a collection of points, which constitute a subset of an 

appropriate sample space. Such a subset consists of all the elements of the sample space for which the event 

occurs, and in probability and statistics we identify the subset with the event.

• According to our definition, any event is a subset of an appropriate sample space, but it should be observed 

that the converse is not necessarily true. For discrete sample spaces, all subsets are events, but in the 

continuous case some rather abstruse point sets must be excluded for mathematical reasons.

An event is a subset of a sample space.



Example
If someone takes three shots at a target and we care only whether each shot is a hit or a miss, describe a suitable 

sample space, the elements of the sample space that constitute event M that the person will miss the target three 

times in a row, and the elements of event N that the person will hit the target once and miss it twice.

Solution:

If we let 0 and 1 represent a miss and a hit, 

respectively, the eight possibilities (0, 0, 0), (1, 0, 0), 

(0, 1, 0), (0, 0, 1),  (1, 1, 0), (1, 0, 1), (0, 1, 1), and 

(1, 1, 1) may be displayed as in the adjoining figure.  

Thus, it can be seen that

M = {(0, 0, 0)} and N = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}



Combination of Events6

• In many problems of probability we are interested in events that are actually combinations of two or more 

events, formed by taking unions, intersections, and complements.

• If A and B are any two subsets of a sample space S, 

▪ their union A∪B is the subset of S that contains all the elements that are either in A, in B, or in both;

▪ their intersection A∩B is the subset of S that contains all the elements that are in both A and B;

▪ and the complement A’ of A is the subset of S that contains all the elements of S that are not in A.



Combination of Events6

• Sample spaces and events, particularly 

relationships among events, are often depicted by 

means of Venn diagrams, in which the sample 

space is represented by a rectangle, while events 

are represented by regions within the rectangle, 

usually by circles or parts of circles. For instance, 

the shaded regions of the four Venn diagrams 

besides represent, respectively, event A, the 

complement of event A, the union of events A and 

B, and the intersection of events A and B.



Mutually exclusive events7

• When A and B are mutually exclusive, we write A∩B = ∅, where ∅ denotes the empty set, which has no 

elements at all. The diagram on the right serves to indicate that A is contained in B, and symbolically we 

express this by writing A⊂B.

Two events having no elements in common are said to be mutually exclusive.



Probability of an Event8

• To formulate the postulates of probability, we shall follow the practice of denoting events by means of capital 

letters, and we shall write the probability of event A as P(A), the probability of event B as P(B), and so forth. 

The following postulates of probability apply only to discrete sample spaces, S.

POSTULATE 1: The probability of an event is a nonnegative real number; that is, P(A) ≥ 0 for any subset A of S.

POSTULATE 2:  P(S) = 1.

POSTULATE 3:  If A1,A2,A3, . . ., is a finite or infinite sequence of mutually exclusive events of S, then 

P(𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ · · · ) = P(𝐴1)+P(𝐴2)+P(𝐴3) + · · ·



Probability of an Event8

• Since proportions are always positive or zero, the first postulate is in complete agreement with the frequency 

interpretation.

• The second postulate states indirectly that certainty is identified with a probability of 1; after all, it is always 

assumed that one of the possibilities in S must occur, and it is to this certain event that we assign a 

probability of 1. As far as the frequency interpretation is concerned, a probability of 1 implies that the event 

in question will occur 100 percent of the time or, in other words, that it is certain to occur.

• Taking the third postulate in the simplest case, that is, for two mutually exclusive events 𝐴1 and 𝐴2, it can 

easily be seen that it is satisfied by the frequency interpretation. If one event occurs, say, 28 percent of the 

time, another event occurs 39 percent of the time, and the two events cannot both occur at the same time 

(that is, they are mutually exclusive), then one or the other will occur 28+39 = 67 percent of the time. Thus, 

the third postulate is satisfied, and the same kind of argument applies when there are more than two 

mutually exclusive events.

• Note that the three postulates do not tell us how to assign probabilities to events; they merely restrict the 

ways in which it can be done.



Example
An experiment has four possible outcomes, A, B, C, and D, that are mutually exclusive. Explain why the following 

assignments of probabilities are not permissible: 

(a) P(A) = 0.12,P(B) = 0.63,P(C) = 0.45,P(D) = −0.20;

(b) 𝑷 𝑨 =
𝟗

𝟏𝟐𝟎
, 𝑷 𝑩 =

𝟒𝟓

𝟏𝟐𝟎
 , 𝑷 𝑪 =

𝟐𝟕

𝟏𝟐𝟎
, 𝑷 𝑫 =

𝟒𝟔

𝟏𝟐𝟎

Solution:

(a) P(D) = −0.20 violates Postulate 1;

(b) P S = P A ∪ B ∪ C ∪ D =
9

120
+

45

120
+

27

120
+

46

120
=

127

120
≠ 1, and this violates Postulate 2.



Theorem 19

Theorem:

If A is an event in a discrete sample space S, then P(A) equals the sum of the probabilities of the individual 

outcomes comprising A.

Proof: 

Let 𝑂1, 𝑂2𝑂3, . . ., be the finite or infinite sequence of outcomes that comprise the event A. Thus,

𝐴 = 𝑂1 ∪ 𝑂2 ∪ 𝑂3 …

and since the individual outcomes, the O’s, are mutually exclusive, the third postulate of probability yields

𝑃 𝐴 = 𝑃 𝑂1 + 𝑃 𝑂2 + 𝑃 𝑂3 + ⋯

This completes the proof.



Example
If we twice flip a balanced coin, what is the probability of getting at least one head?

Solution:

The sample space is S = {HH, HT, TH, TT}, where H and T denote head and tail. Since we assume that the coin is 

balanced, these outcomes are equally likely and we assign to each sample point the probability 14. Letting A 

denote the event that we will get at least one head, we get A = {HH, HT, TH} and

𝑃 𝐴 = 𝑃 𝐻𝐻 + 𝑃 𝐻𝑇 + 𝑃 𝑇𝐻

=
1

4
+

1

4
+

1

4

=
3

4



Theorem 29

Theorem:

If an experiment can result in any one of N different equally likely outcomes, and if n of these outcomes together 

constitute event A, then the probability of event A is 

𝑃 𝐴 =
𝑛

𝑁
Proof: 

Let O1,O2, . . . ,ON represent the individual outcomes in S, each with probability 
𝟏

𝑵
. If A is the union of n of these 

mutually exclusive outcomes, and it does not matter which ones, then

𝑃(𝐴) = 𝑃(𝑂1 ∪ 𝑂2 ∪ 𝑂3 … ∪ 𝑂𝑛)

𝑃 𝐴 = 𝑃 𝑂1 + 𝑃 𝑂2 + ⋯ 𝑃(𝑂𝑛)

=
1

𝑁
+

1

𝑁
+ ⋯

1

𝑁
⇒ 𝑛 𝑡𝑒𝑟𝑚𝑠

=
𝑛

𝑁
This completes the proof.



Example
A five-card poker hand dealt from a deck of 52 playing cards is said to be a full house if it consists of three of a kind and a 
pair. If all the five-card hands are equally likely, what is the probability of being dealt a full house?

Solution:

The number of ways in which we can be dealt a particular full house, say three kings and two aces, is 
4
3

4
2

. 

 Since there are 13 ways of selecting the face value for the three of a kind and for each of these there are 12 ways of 
selecting the face value for the pair, there are altogether

𝑛 = 13.12.
4
3

4
2

different full houses. Also, the total number of equally likely five-card poker hands is

𝑁 =
52
5

and it follows by Theorem 2 that the probability of getting a full house is 

𝑃 𝐴 =
𝑛

𝑁
=

13.12
4
3

4
2

52
5

= 0.0014



Theorem 39

Theorem:

If A and A’ are complementary events in a sample space S, then P(A’) = 1− P(A)

Proof: 

In the second and third steps of the proof that follows, we make use of the definition of a complement, 

according to which A and A’ are mutually exclusive and A∪A’ = S. Thus, we write

     1 = P(S)    (by Postulate 2)

= P(A∪A’)

= P(A)+P(A’ )   (by Postulate 3)

and it follows that P(A’) = 1−P(A).



Theorem 49

Theorem:

P(∅) = 0 for any sample space S.

Proof: 

Since S and ∅ are mutually exclusive and S∪∅ = S in accordance with the definition of the empty set ∅, it follows 

that

P(S) = P(S∪∅)

= P(S)+P(∅)    (by Postulate 3)

and, hence, that P(∅) = 0.



Theorem 59

Theorem:

If A and B are events in a sample space S and A⊂B, then P(A) ≤ P(B).

Proof: 

Since A⊂B, we can write

B = A∪(A’ ∩B)

as can easily be verified by means of a Venn diagram. Then, since A and A’ ∩B are mutually exclusive, we get

P(B) = P(A)+P(A’ ∩B)       (by Postulate 3)

≥P(A)                       (by Postulate 1)



Theorem 69

Theorem:

0 ≤ 𝑃 𝐴 ≤ 1 for any event A.

Proof: 

Using Theorem 5 and the fact that ∅ ⊂ A ⊂ S for any event A in S, we have

𝑃(∅) ≤ P 𝐴 , +𝑃(𝑆)

Then, P(∅) = 0 and P(S) =1 leads to the result that

0 ≤ 𝑃 𝐴 ≤ 1



Theorem 79

Theorem:

If A and B are any two events in a sample space S, then
𝑃(𝐴 ∪ 𝐵)  =  𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

Proof: 

Assigning the probabilities a, b, and c to the mutually exclusive events 

A∩B,A∩B’, and A’ ∩B as in the adjoining Venn diagram, we find that

    P(A∪B) = a+b+c

= (a+b)+(c+a)−a

= P(A)+P(B)−P(A∩B)



Conditional Probability10

• Difficulties can easily arise when probabilities are quoted without specification of the sample space. For 

instance, if we ask for the probability that a lawyer makes more than $75,000 per year, we may well get 

several different answers, and they may all be correct.

• One of them might apply to all those who are engaged in the private practice of law, another might apply to 

lawyers employed by corporations, and so forth. Since the choice of the sample space (that is, the set of all 

possibilities under consideration) is by no means always self-evident, it often helps to use the symbol P(A|S) 

to denote the conditional probability of event A relative to the sample space S or, as we also call it, “the 

probability of A given S.” The symbol P(A|S) makes it explicit that we are referring to a particular sample space 

S, and it is preferable to the abbreviated notation P(A) unless the tacit choice of S is clearly understood.

• It is also preferable when we want to refer to several sample spaces in the same example.

• If A is the event that a person makes more than $75,000 per year, G is the event that a person is a law school 

graduate, L is the event that a person is licensed to practice law, and E is the event that a person is actively 

engaged in the practice of law, then P(A|G) is the probability that a law school graduate makes more than 

$75,000 per year, P(A|L) is the probability that a person licensed to practice law makes more than $75,000 per 

year, and P(A|E) is the probability that a person actively engaged in the practice of law makes more than 

$75,000 per year.

If A and B are any two events in a sample space S and P(A) ≠ 0, the conditional probability of B given A is

𝑷 𝑩 𝑨 =
𝑷 𝑨 ∩ 𝑩

𝑷 𝑨



Example
A manufacturer of airplane parts knows from past experience that the probability is 0.80 that an order will be ready 

for shipment on time, and it is 0.72 that an order will be ready for shipment on time and will also be delivered on 

time. What is the probability that such an order will be delivered on time given that it was ready for shipment on 

time?

Solution:

If we let R stand for the event that an order is ready for shipment on time and D be the event that it is delivered on 

time, we have P(R) = 0.80 and P(R∩D) = 0.72, and it follows that

𝑃 𝐷 𝑅 =
𝑃 𝑅 ∩ 𝐷

𝑃 𝑅
=

0.72

0.80
= 0.90

Thus, 90 percent of the shipments will be delivered on time provided they are shipped on time. Note that P(R|D), 

the probability that a shipment that is delivered on time was also ready for shipment on time, cannot be 

determined without further information; for this purpose we would also have to know P(D).



Example
Find the probabilities of randomly drawing two aces in succession from an ordinary deck of 52 playing cards if we 

sample

(a) without replacement;

(b) with replacement.

Solution:

(a) If the first card is not replaced before the second card is drawn, the probability of getting two aces in succession 

is

𝟒

𝟓𝟐
∗

𝟑

𝟓𝟏
=

𝟏

𝟐𝟐𝟏

(b) If the first card is replaced before the second card is drawn, the corresponding probability is

𝟒

𝟓𝟐
∗

𝟒

𝟓𝟐
=

𝟏

𝟏𝟔𝟗



Independence of events11

• Informally speaking, two events A and B are independent if the occurrence or nonoccurrence of either one 

does not affect the probability of the occurrence of the other.

• Symbolically, two events A and B are independent if P(B|A) = P(B) and P(A|B) = P(A), and it can be shown that 

either of these equalities implies the other when both of the conditional probabilities exist, that is, when 

neither P(A) nor P(B) equals zero.

• If two events are not independent, they are said to be dependent.

Two events A and B are independent if and only if

P(A∩B) = P(A) ·P(B)



Example
A coin is tossed three times and the eight possible outcomes, HHH, HHT, HTH, THH, HTT, THT, TTH, and TTT, are 

assumed to be equally likely. If A is the event that a head occurs on each of the first two tosses, B is the event that a 

tail occurs on the third toss, and C is the event that exactly two tails occur in the three tosses, show that

(a) events A and B are independent;

(b) events B and C are dependent.

Solution:

Since

A = {HHH, HHT}

B = {HHT, HTT, THT, TTT}

C = {HTT, THT, TTH}

A∩B = {HHT}

B∩C = {HTT, THT}



Continued

the assumption that the eight possible outcomes are all equiprobable yields 

P(A) = 
1

4
, P(B) = 

1

2
, P(C) = 

3

8
 ,P(A∩B) = 

1

8
 , and P(B∩C) = 

1

4
.

(a) Since P(A) ·P(B) = 
1

4
∗

1

2
=

1

8
= P(A∩B), events A and B are independent.

(b) Since P(B) ·P(C) = 
1

2
∗

3

8
=

3

16
≠ P(B∩C), events B and C are not independent.



Independence of events11

• For three events A, B, and C, for example, independence requires that

P(A∩B) = P(A) ·P(B)

P(A∩C) = P(A) ·P(C)

P(B∩C) = P(B) ·P(C)

• and

P(A∩B∩C) = P(A) ·P(B) ·P(C)

• It is of interest to note that three or more events can be pairwise independent without being independent.

Events 𝐴1, 𝐴2, . . . , and 𝐴𝑘  are independent if and only if the probability of the intersections of any 2, 3, . . . , or k 

of these events equals the product of their respective probabilities.



Example
Following figure  shows a Venn diagram with probabilities assigned to its various regions. Verify that A and B are 

independent, A and C are independent, and B and C are independent, but A, B, and C are not independent.

Solution:

As can be seen from the diagram, P(A) = P(B) = P(C) = 
1

2

, P(A∩B) = P(A∩C) = P(B∩C) = 
1

4
 , and P(A∩B∩C) = 

1

4
.

Thus, 

P(A) ·P(B) = 
1

4
 = P(A∩B)

P(A) ·P(C) = 
1

4
 = P(A∩C)

P(B) ·P(C) = 
1

4
 = P(B∩C)

but

P(A) ·P(B) ·P(C) = 
1

8
 ≠ (A∩B∩C)



Bayes Theorem12

• Bayes’ theorem (also known as Bayes’ rule or Bayes’ law) is a result in probabillity theory that relates 

conditional probabilities. If A and B denote two events, P(A|B) denotes the conditional probability of A 

occurring, given that B occurs.

• The two conditional probabilities P(A|B) and P(B|A) are in general different.

• Bayes theorem gives a relation between P(A|B) and P(B|A).

• An important application of Bayes’ theorem is that it gives a rule how to update or revise the strengths of 

evidence-based beliefs in light of new evidence a posterior.

• As a formal theorem, Bayes’ theorem is valid in all interpretations of probability. However, it plays a central 

role in the debate around the foundations of statistics: frequentist and Bayesian interpretations disagree 

about the kinds of things to which probabilities should be assigned in applications. Whereas frequentists 

assign probabilities to random events according to their frequencies of occurrence or to subsets of 

populations as proportions of the whole, Bayesians assign probabilities to propositions that are uncertain.

• A consequence is that Bayesians have more frequent occasion to use Bayes’ theorem. The articles on 

Bayesian probability and frequentist probability discuss these debates at greater length.



Bayes Theorem12

Each term in Bayes’ theorem has a conventional name:

▪ P(A) is the prior probability or marginal probability of A. It is ”prior” in the sense that it does not take 

into account any information about B.

▪ P(A|B) is the conditional probability of A, given B. It is also called the posterior probability because it is 

derived from or depends upon the specified value of B.

▪ P(B|A) is the conditional probability of B given A.

▪ P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

Bayes’ theorem relates the conditional and marginal probabilities of stochastic events A and B:

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 . 𝑷 𝑨

𝑷 𝑩



Bayes Theorem12

• The probability of two events A and B happening, P(A∩B), is the probability of A, P(A), times the probability of 

B given that A has occurred, 

P(B|A). P(A ∩ B) = P(A)P(B|A)

• On the other hand, the probability of A and B is also equal to the probability of B times the probability of A 

given B.

P(A ∩ B) = P(B)P(A|B)

• Equating the two yields:

P(B)P(A|B) = P(A)P(B|A)

• and thus

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵
• This equation, known as Bayes Theorem is the basis of statistical inference

Proof



Example
A rare but serious disease, D, has been found in 0.01 percent of a certain population. A test has been developed 

that will be positive, p, for 98 percent of those who have the disease and be positive for only 3 percent of those 

who do not have the disease. Find the probability that a person tested as positive does not have the disease.

Solution:

Let ഥ𝐷 and ҧ𝑝 represent the events that a person randomly selected from the given population, respectively, does not 

have the disease and is found negative for the disease by the test. Substituting the given probabilities into the 

formula, we get

𝑃 ഥ𝐷 𝑝 =
𝑃 ഥ𝐷 𝑃 𝑝 ഥ𝐷

𝑃 𝐷 𝑃 𝑝 𝐷 + 𝑃 ഥ𝐷 𝑃 𝑝 ഥ𝐷
=

0.9999 ∗ 0.03

0.0001 ∗ 0.98 + 0.9999 ∗ 0.03
= 0.997

This example demonstrates the near impossibility of finding a test for a rare disease that does not have an 

unacceptably high probability of false positives.
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