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Geometric Series

A geometric series )}, a, Is a series for which the ratio of each two consecutive terms a,,1/a, is a constant
function of the summation index k.

« A geometric series is a series of the form a,ar,ar?, ar? ...,ar™. The sum of series for r # 1 is given by:

1—17r
* The number r is called the ratio or common ratio. If |r| < 1, we can sum the infinite geometric series:

1—1"n+1
a+ar+ar’+-+ar"= a(—)

1
a+ar+ar2+---+arn+-~=a<1 r)



2 Random Variable

Q A random variable is a numerical quantity whose value depends on chance.

»  We typically write a random variable in a capital letter such as X.

Example:
» If we flip a coin and observe which side is up, the sample space is {H, T}. If we assign H=1 and T=0, our

random variable is:
¥ = 1 with probability of 0.5
~ | 0 withprobability of 0.5

« Random Variables are denoted by upper case letters (X).
 Individual outcomes for a RV are denoted by lower case letters (x).



3 Types of Random Variables

A random variable is a discrete
random variable if it can take on

DiSC TEte no more than

a countable number of values.

A random variable is a continuous
random variable if it can take any

Continuous i

an interval.

Random Variables




Probability Function

* Probability Distribution: Table, Graph, or Formula that describes values a random variable can take on, and
its corresponding probability (discrete RV) or density (continuous RV).

« Discrete Probability Distribution: Assigns probabilities (masses) to the individual outcomes, denoted by:
P(x) = P(X=x)

« Continuous Probability Distribution: Assigns density at individual points, probability of ranges can be
obtained by integrating density function, denoted by: f(x)

e Cumulative Distribution Function: F(X) = P(X<x)



5 Properties of probability functions

If X is a discrete random variable that takes on the values a4, a,, ..., then:

P(X=a) = O0forallx

zp(xzx):1

all x

The probability function always takes on a value greater than or equal to zero, and always sums to one.
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6 Required Properties of Probability Distribution for Discrete Random Variables

* Let X be a discrete random variable with probability distribution, P(x). Then,

. 0 <£P(x)< 1foranyvaluex, and
. the individual probabilities sum to 1, that is,

ZP(x) —1

where the notation indicates summation over all possible values of x



7 Probability Density Function

A probability density function, is a function that assigns

probabilities to a continuous random variable. p(@)
fx(x)=0
upper bound
j f(x)dx =1 (The area under the graph is 1)
lower bound




8 Calculating Probability

» Probability in terms of probability density function (p.d.f):

Px1<X<xp)= szf(x)dx

b
P(a<X<b)=P(aSX<b)=P(aSXSb)=P(a<XSb):jf(x)dx



8 Calculating Probability

« Suppose X is a random variable and we have a function f(x) which is integrated as follows to get probabilities of
events:

b
Pla<X<bh) =f f(x)dx
b a
P(X <b) =J f(x)dx
Pla<X) = foof(x)dx

« And so on. Then f(x) is called the probability density function of X, and the random variable X is called
continuous.

» The set of points where f(x) # 0 is called the universe. You can think of probabilities as areas under the f(x)
graph:

prob density
J(x)




9 Warning

» The values of the density function are not probabilities. The units on f(x) are probability per unit length. It's f(x)
times dx that is a probability, namely,

f(x)dx = P(X = x)



10 Cumulative Probability Distribution

The cumulative probability distribution, F(x,), of a random variable X, represents the probability that X does
not exceed the value x,, as a function of x,. That is,

where the function is evaluated at all values of x,

F(xo) = P(X < X¢)

o [ Fo0 [

1/6

1/6

! 5/6
2| 1/6 2/6 /3
3| 1/6 3/6 1/2
4| 1/6 4/6 1/3
5| 1/6 5/6 1/6
6| 1/6 6/6

P(x)



11 Cumulative Distribution Function

Discrete Random Variable Continuous Random Variable
The cumulative distribution function for a « The cumulative distribution function for a
discrete random variable is defined to be: continuous random variable is defined to be:

Fy(x) = P(X < x) = z P(X = x)

all x

Fx(0) = PR <) = [ fx®de



11 Cumulative Distribution Function

If a random variable is discrete, we say PMF (probability mass function); if a random variable is continuous, we
say PDF (probability density function).

Whether a random variable is discrete or continuous, we always say CDF (cumulative probability function).



12 Properties of a Distribution Function

Let X be a random variable with distribution function
F(X). F(x) = P(X < x)

F(x) collects cumulative probability so its graph starts at
height 0 and rises to a height of 1. In other words:

F is non — decreasing.
(F can increase or stay level but not go down)
F(~0) = 0,F(c0) = 1

1.0

0.6

0.4

0.2+

0.0

cdf
pdf
derivative

frequency |




13 Properties of CDF

« If X'is discrete and takes integer values, the PMF and CDF can be obtained from each other by summing or
differencing:
F(k) = ¥ _ . p.(i) ... this is the definition of F(k).
Py(k)=PX<k)—PX<k-1)=F(k)—F(k—1)

« If X'is continuous , the PDF and CDF can be obtained from each other by integration or differentiation:

X d
F(x) = f fOdt, [ =5 F@)

» By definition, F(x) =P(X <x) =P(—0o <X <x) = f_xoof(t)dt. Taking the derivative at both sides of
Fx) = [*, f(t)dt gives is f(x) = = F(x)



14 Expectation of a Random Variable

Discrete Random Variable

The mean (or expectation) for a discrete random
variable is defined to be:

E(X)=zx*P(X=x)

all x

The expectation or expected value or mean of a
random variable X is a weighted average of the
values of X, where each value x is weighted by
the probability of its occurrence.

Continuous Random Variable

The mean (or expectation) for a continuous
random variable is defined to be:

oo

PG = | af@dx

— 00



15 EXxpectation of a Function

Discrete Random Variable Continuous Random Variable
« The mean (or expectation) of g(X) for a discrete « The mean (or expectation) of g(X) for a
random variable is defined to be: continuous random variable is defined to be:

EX) = ) g@@)P(X =x)

all x

Ew) = | guofxxdx




16 Variance

* Let X be a random variable with finite mean p = E(X). The variance of X, denoted by Var(X), is defined as
follows:

Var(X) = E[(X — p)?] = E[X?] — [E(X)]?

« If X has infinite mean or if the mean of X does not exist, we say that Var(X) does not exist. The standard
deviation of X is the non-negative square root of Var(X) if the variance exists.

» The square root of variance, typically denoted by g, is called standard deviation.



16 Variance

Discrete Random Variable Continuous Random Variable
« The variance for a discrete random variable is « The variance for a continuous random variable is
defined to be: defined to be:

all x all x

2 o 2
Uar(X) = Z XZP(X = X) - <X Z P(X = X)> var(x) = j xzfX(x)dx —( f fo(x)dx>

— 00 — 00




17 EXxpectation of a linear function

E(aX+b)=aE(X)+b



18 Variance of a linear function

var(aX + b) = a*var[X]



19 Skewness

* The third central moment is the skewness. The formula for skewness is:
E[((X — w3 ] = E[X] — 3BuE[X*] + 2p®

Where u=E[X]



19 Positive Skew

—_— Positive Skew
- == No Skew




19 Negative Skew

Negative Skew
No Skew




20 Coefficient of Skewness

The formula for coefficient of skewness is:

E[(X — w3]
(var[X]1>

The coefficient of skewness is dimensionless, so it makes it easier to compare different distributions.



21 Median of a Random Variable

The median of a random variable X is the value m such that:

P(X<m)<0.5<PX<m)

In particular, if X is a continuous random variable, the median m is defined by the equation:



22 Percentile

 Percentile. If your CAT score is in the 90" percentile, then 90% of the people who took the same test scored
below you or got the same score as you did; only 10% of the people scored better than you.

 For arandom variable X, the pt"* percentile, means that:
P(X < pth percentile) = p% < F(p'" percentile) = p% < P(X > p'! percentile) = (1 — p)%

« Median = Middle = 50" percentile



23 Mode

« Mode = Most Often = Most Observed

* For a discrete rv: Mode is the value where the function P(X=x) has max. value

* For a continuous rv: Mode is the value where pdf, i.e. f(x), is maximum (Use maxima-minima techniques to
find out the maximum value of f(X)).



24 Monte Carlo Simulation

« With the advent of high-speed personal computers Monte Carlo simulations have become one of the most
valuable tools of the actuarial profession. This is because the vast majority of the practically important problems
are not amenable to analytical solution.

» We outline one basic simulation technique that can be used to simulate values from most of the standard
distributions. This is known as the inverse transform method. It can be applied to both continuous and
discrete distributions.
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25 Inverse Transform Method for continuous distributions

» The method works by first generating a random number from a uniform distribution on the interval (0,1) . We
then use the cumulative distribution function of the distribution we are trying to simulate to obtain a random
value from that distribution.

» First we generate a random number, U, from the U(0,1) distribution. We can use this to simulate a random
variate X with PDF f (x) by using the CDF, F(x).
* Let U be the probability that X takes on a value less than or equal to x ,ie:
U=PX < x)= F(x).Then x can be derived as:
x = F~1(u)

* Hence, the following two-step algorithm is used to generate a random variate x from a continuous distribution
with CDF F(x) :

generate a random number u from U(O, 1),
i.  return x = F~1(u).
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25 Inverse Transform Method for continuous distributions

»  We can represent this on a diagram as follows. We have a random value, u, between 0 and 1. Recall that the
cumulative distribution, F(x) , increases from 0 to 1 as x increases:

F(X:} A
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|
|
|
|
|
|
|
|
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|
|
|
h

F l(u}

L
>

X

 If we set u =F(x) we can obtain a random value, x, by inverting the cumulative distribution, x = F~1(u) . Hence
this method is called the inverse transform method.
« This method requires that our distribution has a cumulative distribution function, F(x) , in the first place. This
rules out the gamma, normal, lognormal and beta distributions.
« Formally, we can prove that the random variable X = F~1(U) has the CDF F(x) , as follows:
PX<x)= P[F1(U) < x| =P[U< F(x)] = F(x)



26 Disadvantage of ITM

« The main disadvantage of the inverse transform method is the necessity to have an explicit expression for the
inverse of the distribution function F(x) . For instance, to generate a random variate from the standard normal
distribution using the inverse transform method we need the inverse of the distribution function

1 (* _¢
F(X)=Ej e 2dt

» However, no explicit solution to the equation u * F(x) can be found in this case.



27 Inverse Transform Method for discrete distributions

« We cannot invert algebraically the distribution function of a discrete random variable, as it is a step function.
The distribution function, F(x) , is the sum of the probabilities so far, eg:
F5)=P(X<5)=PX=0+PX=1)+-+P(X =5)
* Given a random value, u, from U(0,1) we can read off the x value from the distribution function graph as
follows:
Fx) b

1

Hp—m——m o - -

0

|
|
W
0 1 2 3 4 3 6

* From the graph, we can see that in this particular case our value of u lies between F(2) and F(3) .
« This gives x = 3 as our simulated value.



27 Inverse Transform Method for discrete distributions

 Soin general, if our value u lies between F(x;_;) and F(x;) then our simulated value is x; . If the value of u

corresponds exactly to the position of a step, then by convention we use the lower of the x values, ie the point
corresponding to the left hand end of the step.

« Let X be a discrete random variable which can take only the values x4, x,, ..., xy where x; < x, < -+ < xyp.
« The first step is to generate a random number, U, from the U(0,1) distribution. We can use this to simulate a
random variate X with PDF f (x) by using the CDF, F(x).
* Let U be the probability that X takes on a value less than or equal to x. Then X = x; if:
F(xj_l) <U<L F(x])
ieP(X =x) +PX =x)+-+P(X=xj_1) <U<PX =x1) +PX=x3) +-+ P(X = x)



27 Inverse Transform Method for discrete distributions

Note that for x < x;, we have F(x)=0.
Hence, the following three-step algorithm is used to generate a random variate x from a discrete distribution
with CDF F(x) :

generate a random number u from U(0,1) .

find the positive integer i such that F(x;_1) < u < F(x;) .

return x = x; .

We can see that the algorithm can return only variates x from the range {x;, x5, .., xy} and that the probability

that a particular value x = x; is returned is given by:

P(value returned is x;) = P[F(x;_1) < U < F(x;)] = F(x;) — F(x;—-1) = P(X = x;)

We can use a similar approach for the binomial distribution.
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