
Class: FY BSc

Subject : Probability and Statistics

Chapter: Unit 1 Chapter 4

Chapter Name: Random Variables

1



Topics to be covered

2

1. Geometric Series

2. Random Variable

3. Types of Random Variables

4. Probability Functions

5. Properties of Probability Functions

6. Required Properties of Probability Distribution for Discrete Random Variables

7. Probability Density Function

8. Calculating Probability

9. Warning

10. Cumulative Probability Distribution

11. Cumulative Distribution Function

12. Properties of a Distribution Function



Continued…

3

13. Properties of CDF

14. Expectation of a Random Variable

15. Expectation of a Function

16. Variance

17. Expectation of a linear function

18. Variance of a linear function

19. Skewness

20. Coefficient of Skewness

21. Median of a Random Variable

22. Percentile

23. Mode

24. Monte Carlo Simulation



Continued…

4

25. Inverse Transform Method for continuous distributions

26. Disadvantage of ITM

27. Inverse Transform Method for discrete distributions



Geometric Series1
A geometric series σ𝑘 𝑎𝑘 is a series for which the ratio of each two consecutive terms 𝑎𝑘+1/𝑎𝑘 is a constant 

function of the summation index k.

• A geometric series is a series of the form 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3 … , 𝑎𝑟𝑛. The sum of series for 𝑟 ≠ 1 is given by:

𝒂 + 𝒂𝒓 + 𝒂𝒓𝟐 + ⋯ + 𝒂𝒓𝒏 = 𝒂
𝟏 − 𝒓𝒏+𝟏

𝟏 − 𝒓
• The number r is called the ratio or common ratio. If 𝑟 < 1, we can sum the infinite geometric series:

𝒂 + 𝒂𝒓 + 𝒂𝒓𝟐 + ⋯ + 𝒂𝒓𝒏 + ⋯ = 𝒂
𝟏

𝟏 − 𝒓



Random Variable2
A random variable is a numerical quantity whose value depends on chance.

• We typically write a random variable in a capital letter such as X. 

Example:

• If we flip a coin and observe which side is up, the sample space is {H, T}. If we assign H=1 and T=0, our 

random variable is:

𝑋 =
 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 0.5
 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 0.5

• Random Variables are denoted by upper case letters (X).

• Individual outcomes for a RV are denoted by lower case letters (x).



Types of Random Variables3
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Discrete
A random variable is a discrete 

random variable if it can take on 

no more than

a countable number of values.

Continuous
A random variable is a continuous 

random variable if it can take any 

value in

an interval.



Probability Function4

• Probability Distribution: Table, Graph, or Formula that describes values a random variable can take on, and 

its corresponding probability (discrete RV) or density (continuous RV).

• Discrete Probability Distribution: Assigns probabilities (masses) to the individual outcomes, denoted by: 

P(x) = P(X=x)

• Continuous Probability Distribution: Assigns density at individual points, probability of ranges can be 

obtained by integrating density function, denoted by: f(x)

• Cumulative Distribution Function: F(X) = P(X≤x)



Properties of probability functions5

• If X is a discrete random variable that takes on the values 𝑎1, 𝑎2, … , then:

𝑃(𝑋 = 𝑎)  ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

෍

𝑎𝑙𝑙 𝑥

𝑃(𝑋 = 𝑥) = 1

• The probability function always takes on a value greater than or equal to zero, and always sums to one. 



Required Properties of Probability Distribution for Discrete Random Variables6

• Let X be a discrete random variable with probability distribution, P(x). Then, 

i. 0  ≤ P(x) ≤  1 for any value x, and 

ii. the individual probabilities sum to 1, that is, 

෍

𝑥

𝑃(𝑥) = 1

where the notation indicates summation over all possible values of x 



Probability Density Function7

• A probability density function, is a function that assigns 

probabilities to a continuous random variable.

𝒇𝑿 𝒙 ≥ 𝟎

න
𝒍𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

𝒖𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

𝒇(𝒙)𝒅𝒙 = 𝟏 (The area under the graph is 1)



Calculating Probability8

• Probability in terms of probability density function (p.d.f):

𝑷(𝒙𝟏 < 𝑿 < 𝒙𝟐 ) = න
𝒙𝟏

𝒙𝟐

𝒇(𝒙)𝒅𝒙

𝑷 𝒂 < 𝑿 < 𝒃 = 𝑷 𝒂 ≤ 𝑿 < 𝒃 = 𝑷 𝒂 ≤ 𝑿 ≤ 𝒃 = 𝑷 𝒂 < 𝑿 ≤ 𝒃 = න
𝒂

𝒃

𝒇 𝒙 𝒅𝒙



Calculating Probability8

• Suppose X is a random variable and we have a function f(x) which is integrated as follows to get probabilities of 

events:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

𝑃 𝑋 ≤ 𝑏 = න
−∞

𝑏

𝑓 𝑥 𝑑𝑥

𝑃 𝑎 ≤ 𝑋 = න
𝑎

∞

𝑓 𝑥 𝑑𝑥

• And so on. Then f(x) is called the probability density function of X, and the random variable X is called 

continuous.

• The set of points where 𝑓 𝑥 ≠ 0 is called the universe. You can think of probabilities as areas under the 𝑓 𝑥  

graph:



Warning9

• The values of the density function are not probabilities. The units on f(x) are  probability per unit length. It's f(x) 

times dx that is a probability, namely, 

𝒇(𝒙)𝒅𝒙 = 𝑷(𝑿 ≈ 𝒙)



Cumulative Probability Distribution10

• The cumulative probability distribution, 𝐹(𝑥0), of a random variable X, represents the probability that X does 

not exceed the value 𝑥0, as a function of 𝑥0. That is, 

𝐅(𝐱𝟎) = 𝐏(𝐗 ≤ 𝐱𝟎)
where the function is evaluated at all values of 𝑥0

x P(X=x) F(x)

1 1/6 1/6

2 1/6 2/6

3 1/6 3/6

4 1/6 4/6

5 1/6 5/6

6 1/6 6/6



Cumulative Distribution Function11

Discrete Random Variable

• The cumulative distribution function for a 

discrete random variable is defined to be:

𝑭𝑿(𝒙) = 𝑷(𝑿 ≤ 𝒙) = ෍

𝒂𝒍𝒍 𝒙

𝑷(𝑿 = 𝒙)

Continuous Random Variable

• The cumulative distribution function for a 

continuous random variable is defined to be:

𝑭𝑿(𝒙) = 𝑷(𝑿 ≤ 𝒙) = න

−∞

𝒙

𝒇𝑿(𝒕)𝒅𝒕



Cumulative Distribution Function11

• If a random variable is discrete, we say PMF (probability mass function); if a random variable is continuous, we 

say PDF (probability density function). 

• Whether a random variable is discrete or continuous, we always say CDF (cumulative probability function). 



Properties of a Distribution Function12

• Let X be a random variable with distribution function 

F(x). 𝐹(𝑥)  =  𝑃(𝑋 ≤  𝑥)

• F(x) collects cumulative probability so its graph starts at 

height 0 and rises to a height of 1. In other words:

𝑭 𝒊𝒔 𝒏𝒐𝒏 − 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈. 
(F can increase or stay level but not go down)

𝑭 −∞ = 𝟎, 𝑭 ∞ = 𝟏



Properties of CDF13

• If X is discrete and takes integer values, the PMF and CDF can be obtained from each other by summing or 

differencing:

𝐹 𝑘 = σ𝑖=−∞
𝑘 𝑝𝑥 𝑖 … this is the definition of F(k).

𝒑𝒙 𝒌 = 𝑷 𝑿 ≤ 𝒌 − 𝑷 𝑿 ≤ 𝒌 − 𝟏 = 𝑭 𝒌 − 𝑭 𝒌 − 𝟏

• If X is continuous , the PDF and CDF can be obtained from each other by integration or differentiation:

𝑭 𝒙 = න
−∞

𝒙

𝒇 𝒕 𝒅𝒕, 𝒇 𝒙 =
𝒅

𝒅𝒙
𝑭(𝒙)

• By definition, 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 𝑃 −∞ ≤ 𝑋 ≤ 𝑥 = ∞−׬

𝑥
𝑓 𝑡 𝑑𝑡. Taking the derivative at both sides of 

𝐹 𝑥 = ∞−׬

𝑥
𝑓 𝑡 𝑑𝑡 gives is 𝑓 𝑥 =

𝑑

𝑑𝑥
𝐹(𝑥)



Expectation of a Random Variable14

Discrete Random Variable

• The mean (or expectation) for a discrete random 

variable is defined to be:

𝑬(𝑿) = ෍

𝒂𝒍𝒍 𝒙

𝒙 ∗ 𝑷(𝑿 = 𝒙)

• The expectation or expected value or mean of a 

random variable X  is a weighted average of the 

values of X, where each value x is weighted by 

the probability of its occurrence. 

Continuous Random Variable

• The mean (or expectation) for a continuous 

random variable is defined to be:

𝐸(𝑥) = න

−∞

∞

𝑥𝑓𝑋(𝑥)𝑑𝑥



Expectation of a Function15

Discrete Random Variable

• The mean (or expectation) of g(X) for a discrete 

random variable is defined to be:

𝑬(𝑿) = ෍

𝒂𝒍𝒍 𝒙

𝒈(𝒙) ∗ 𝑷(𝑿 = 𝒙)

Continuous Random Variable

• The mean (or expectation) of g(X) for a 

continuous random variable is defined to be:

𝑬(𝒙) = න

−∞

∞

𝒈 𝒙 𝒇𝑿(𝒙)𝒅𝒙



Variance16

• Let X be a random variable with finite mean μ = E(X). The variance of X, denoted by Var(X), is defined as 

follows:

𝑽𝒂𝒓(𝑿) = 𝑬[ 𝑿 − 𝝁 𝟐] = 𝑬[𝑿𝟐] − 𝑬 𝑿 𝟐

• If X has infinite mean or if the mean of X does not exist, we say that Var(X) does not exist. The standard 

deviation of X is the non-negative square root of Var(X) if the variance exists. 

• The square root of variance, typically denoted by 𝜎, is called standard deviation. 



Variance16

Discrete Random Variable

• The variance for a discrete random variable is 

defined to be:

𝑣𝑎𝑟(𝑋) = ෍

𝑎𝑙𝑙 𝑥

𝑥2𝑃 𝑋 = 𝑥 − 𝑥 ෍

𝑎𝑙𝑙 𝑥

𝑃 𝑋 = 𝑥

2

Continuous Random Variable

• The variance for a continuous random variable is 

defined to be:

𝑣𝑎𝑟(𝑥) = න

−∞

∞

𝑥2𝑓𝑋 𝑥 𝑑𝑥 − න

−∞

∞

𝑥𝑓𝑋 𝑥 𝑑𝑥

2



Expectation of a linear function17

𝑬 𝒂𝑿 + 𝒃 = 𝒂𝑬 𝑿 + 𝒃



Variance of a linear function18

𝒗𝒂𝒓 𝒂𝑿 + 𝒃 = 𝒂𝟐𝒗𝒂𝒓[𝑿]



Skewness19

• The third central moment is the skewness. The formula for skewness is:

𝑬[ 𝑿 − 𝝁 𝟑 ] = 𝑬[𝑿𝟑] − 𝟑𝝁𝑬[𝑿𝟐] + 𝟐𝝁𝟑

Where 𝜇=𝐸[𝑋]



Positive Skew19



Negative Skew19



Coefficient of Skewness20

• The formula for coefficient of skewness is:

𝑬 𝑿 − 𝝁 𝟑

𝒗𝒂𝒓 𝑿 𝟏.𝟓
 

• The coefficient of skewness is dimensionless, so it makes it easier to compare different distributions.



Median of a Random Variable21

• The median of a random variable X is the value m such that:

𝑷(𝑿 < 𝒎) ≤ 𝟎. 𝟓 ≤ 𝑷(𝑿 ≤ 𝒎)

• In particular, if X is a continuous random variable, the median m is defined by the equation:

𝑭𝑿(𝒎) = 𝟎. 𝟓



Percentile22

• Percentile. If your CAT score is in the 90𝑡ℎ percentile, then 90% of the people who took the same test scored 

below you or got the same score as you did; only 10% of the people scored better than you. 

• For a random variable X , the 𝑝𝑡ℎ percentile, means that:

𝑷(𝑿 ≤ 𝒑𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆) = 𝒑% ⇔ 𝑭(𝒑𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆) = 𝒑% ⇔ 𝑷(𝑿 > 𝒑𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆) = (𝟏 − 𝒑)% 

• Median = Middle = 50𝑡ℎ percentile



Mode23

• Mode = Most Often = Most Observed

• For a discrete rv: Mode is the value where the function P(X=x) has max. value

• For a continuous rv: Mode is the value where pdf, i.e. f(x), is maximum (Use maxima-minima techniques to 

find out the maximum value of f(X)).



Monte Carlo Simulation24

• With the advent of high-speed personal computers Monte Carlo simulations have become one of the most 

valuable tools of the actuarial profession. This is because the vast majority of the practically important problems 

are not amenable to analytical solution.

• We outline one basic simulation technique that can be used to simulate values from most of the standard 

distributions. This is known as the inverse transform method. It can be applied to both continuous and 

discrete distributions.



Inverse Transform Method for continuous distributions25

• The method works by first generating a random number from a uniform distribution on the interval (0,1) . We 

then use the cumulative distribution function of the distribution we are trying to simulate to obtain a random 

value from that distribution.

• First we generate a random number, U , from the U(0,1) distribution. We can use this to simulate a random 

variate X with PDF f (x) by using the CDF, F(x).

• Let U be the probability that X takes on a value less than or equal to x ,ie:

𝑈 = 𝑃 𝑋 ≤  𝑥 =  𝐹(𝑥) . Then x can be derived as:

𝑥 = 𝐹−1(𝑢)

• Hence, the following two-step algorithm is used to generate a random variate x from a continuous distribution 

with CDF F(x) :

i. generate a random number u from U(0, 1),

ii. return 𝑥 = 𝐹−1 𝑢 .



Inverse Transform Method for continuous distributions25

• We can represent this on a diagram as follows. We have a random value, u , between 0 and 1. Recall that the 

cumulative distribution, F(x) , increases from 0 to 1 as x increases:

• If we set u =F(x) we can obtain a random value, x , by inverting the cumulative distribution, 𝑥 =  𝐹−1(𝑢) . Hence 

this method is called the inverse transform method.

• This method requires that our distribution has a cumulative distribution function, F(x) , in the first place. This 

rules out the gamma, normal, lognormal and beta distributions.

• Formally, we can prove that the random variable 𝑋 =  𝐹−1(𝑈) has the CDF F(x) , as follows:

𝑷 𝑿 ≤ 𝒙 =  𝑷 𝑭−𝟏 𝑼 ≤  𝒙 = 𝑷 𝑼 ≤  𝑭 𝒙 =  𝑭(𝒙)



Disadvantage of ITM26

• The main disadvantage of the inverse transform method is the necessity to have an explicit expression for the 

inverse of the distribution function F(x) . For instance, to generate a random variate from the standard normal 

distribution using the inverse transform method we need the inverse of the distribution function

𝑭 𝑿 =
𝟏

𝟐𝝅
න

−∞

𝒙

𝒆−
𝒕𝟐

𝟐 𝒅𝒕

• However, no explicit solution to the equation u  F(x) can be found in this case.



Inverse Transform Method for discrete distributions27

• We cannot invert algebraically the distribution function of a discrete random variable, as it is a step function. 

The distribution function, F(x) , is the sum of the probabilities so far, eg:

𝑭 𝟓 = 𝑷 𝑿 ≤ 𝟓 = 𝑷 𝑿 = 𝟎 + 𝑷 𝑿 = 𝟏 + ⋯ + 𝑷(𝑿 = 𝟓)
• Given a random value, u , from U(0,1) we can read off the x value from the distribution function graph as 

follows:

• From the graph, we can see that in this particular case our value of u lies between F(2) and F(3) .

• This gives x = 3 as our simulated value.



Inverse Transform Method for discrete distributions27

• So in general, if our value u lies between 𝐹(𝑥𝑗−1) and 𝐹(𝑥𝑗) then our simulated value is 𝑥𝑗 . If the value of u 

corresponds exactly to the position of a step, then by convention we use the lower of the x values, ie the point 

corresponding to the left hand end of the step.

• Let X be a discrete random variable which can take only the values 𝑥1, 𝑥2, … , 𝑥𝑁 where 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 .

• The first step is to generate a random number, U , from the U(0,1) distribution. We can use this to simulate a 

random variate X with PDF f (x) by using the CDF, F(x).

• Let U be the probability that X takes on a value less than or equal to x. Then 𝑋 = 𝑥𝑗 if:

𝑭 𝒙𝒋−𝟏 < 𝑼 ≤ 𝑭(𝒙𝒋)

ie𝑷 𝑿 = 𝒙𝟏 + 𝑷 𝑿 = 𝒙𝟐 + ⋯ + 𝑷 𝑿 = 𝒙𝒋−𝟏 < 𝑼 ≤ 𝑷 𝑿 = 𝒙𝟏 + 𝑷 𝑿 = 𝒙𝟐 + ⋯ + 𝑷(𝑿 = 𝒙𝒋)



Inverse Transform Method for discrete distributions27

• Note that for 𝑥 < 𝑥1, we have F(x)=0.

• Hence, the following three-step algorithm is used to generate a random variate x from a discrete distribution 

with CDF F(x) :

i. generate a random number u from U(0,1) . 

ii. find the positive integer i such that 𝐹 𝑥𝑖−1 <  𝑢 ≤  𝐹(𝑥𝑖) .
iii. return 𝑥 = 𝑥𝑖  .
• We can see that the algorithm can return only variates x from the range {𝑥1, 𝑥2, . . , 𝑥𝑁} and that the probability 

that a particular value x = 𝑥𝑖 is returned is given by:

𝑷 𝒗𝒂𝒍𝒖𝒆 𝒓𝒆𝒕𝒖𝒓𝒏𝒆𝒅 𝒊𝒔 𝒙𝒊 = 𝑷 𝑭 𝒙𝒊−𝟏 < 𝑼 ≤ 𝑭 𝒙𝒊 = 𝑭 𝒙𝒊 − 𝑭 𝒙𝒊−𝟏 = 𝑷(𝑿 = 𝒙𝒊)

• We can use a similar approach for the binomial distribution.
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