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Introduction
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In this chapter we shall study some of the probability densities that figure most prominently in statistical theory 

and in applications.



Uniform Distribution 
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A random variable X has a uniform distribution and it is referred to as a continuous uniform random variable if 

and only if its probability density is given by

𝑓𝑥(x) = 
1

𝛽−𝛼
  𝛼 < 𝑥 <  𝛽

        = 0         otherwise

The parameters α and β of this probability density are real constants, with α < 𝛽 

1.1

The mean and the variance of the uniform distribution are given by:

μ = 
𝛼+𝛽

2
                

𝜎2 = 
(𝛽−𝛼)2

12



Gamma Distribution
(including exponential and chi-square)  
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1.2

The gamma family of distributions has 2 positive parameters and is a versatile family. The PDF can take 

different shapes depending on the values of the parameters. The range of the variable is {x: x > 0} .

First note that the gamma function Г (α) is defined for α > 0 as follows:

Г (α) = 0׬

∞
𝑦𝛼−1 𝑒−𝑦 dy

Note in particular that Г (1) = 1



Gamma Distribution
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1.2

The PDF of the gamma distribution with parameters α and λ is defined by:

𝑓𝑥(x) = 
𝜆𝛼

Г(𝛼)
 𝑥𝛼−1𝑒−𝜆𝑥     for x > 0

The moments of the distribution are:

μ = 
𝛼

λ

𝜎2 = 
𝛼

λ2



Gamma Distribution
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1.2

To get some idea about the shape of the graphs of gamma densities, those for several special values 

of α and β are shown in Figure. Some special cases of the gamma distribution play important roles in 

statistics;



Exponential Distribution (Gamma with α = 1)
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1.3

A random variable X has an exponential distribution and it is referred to as an exponential random 

variable if its probability density is given by:

𝑓𝑥(x) = λ𝑒−λ𝑥    for x > 0

The moments of the distribution are:

μ = 
1

λ

𝜎2 = 
1

λ2

The CDF is given as

𝐹𝑋(x) = 0׬

𝑥
λ𝑒−λ𝑡  𝑑𝑡  = 1 - 𝑒−λ𝑥



Exponential Distribution
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1.3

The exponential distribution is used as a simple model for the lifetimes of certain types of equipment. Very 

importantly, it also gives the distribution of the waiting-time, T, from one event to the next in a Poisson process 

with rate λ.

P(T>t) = P(0 events in time t)

           = P(X = 0)   ->  where X ~ Poisson (λt)

           = 𝑒−λ𝑡

P(T<t) = 1 - 𝒆−λ𝒕

𝑓𝑇(t) = λ𝑒−λ𝑡

In fact the time from any specified starting point (not necessarily the time at which the last event occurred) to 

the next event occurring has this exponential distribution. This property can also be expressed as the 

“memoryless” property. So for the exponential distribution we can also show that:

P(X > x + n | X > n) = P(X > x)



Chi-square Distribution
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1.4

Another special case of the gamma distribution arises when α = 
𝛎

𝟐
 and λ = 1/2, where ν is the lowercase 

Greek letter nu.

A random variable X has a chi-square distribution and it is referred to as a chi-square random variable if 

its probability density is given by:

𝑓𝑥(x) = 
(

1

2
)

(
𝑣
2)

Г(𝑣/2)
 𝑥(

𝑣

2
)−1𝑒−(

1

2
)𝑥

      for x > 0.

The moments of the distribution are:

μ = ν

𝜎2 = 2ν

The parameter ν is referred to as the number of degrees of freedom, or simply the degrees of 

freedom. The chi-square distribution plays a very important role in sampling theory.



Useful result

11

1.4

If W Gamma ~ (α, λ) , then 2λW has a 𝝌𝟐𝜶
𝟐 distribution (ie a chi-square distribution with 2α degrees of 

freedom).

This is an important result as it is the only practical way we can calculate probabilities for a gamma distribution 

in an exam. 

Probability tables for the chi-square distribution can be found on pages 164-166 of the Tables



Beta Distribution
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1.5

A random variable X has a beta distribution and it is referred to as a beta random variable if its probability 

density is given by:

fx(x) = 
Г α+β

Г α Г β
 xα−1(1 − x)β−1      for 0<x<1.

The moments of the distribution are:

μ = 
𝛼

𝛼+𝛽

𝜎2 = 
𝛼𝛽

(𝛼+𝛽)2 (𝛼+𝛽+1)

The (continuous) uniform distribution on (0,1) is a special case (with α=β=1 ).



Normal Distribution
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1.6

The normal distribution, is in many ways the cornerstone of modern statistical theory. It was investigated first 

in the eighteenth century when scientists observed an astonishing degree of regularity in errors of 

measurement. They found that the patterns (distributions) that they observed could be closely approximated by 

continuous curves, which they referred to as “normal curves of errors” and attributed to the laws of chance.

Many numerical populations have distributions that can be fit very closely by an appropriate normal curve.



Normal Distribution
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1.6

A random variable X has a normal distribution and it is referred to as a normal random variable with ts 

probability density given by

fx(x) = 
1

𝜎 2𝜋
 𝑒−

1

2
 (

𝑥−𝜇

𝜎
)2

         for -∞ < x < ∞

The parameter μ is, in fact, E(X) and that the parameter 

σ is, in fact, the square root of var(X), where X is a 

random variable having the normal distribution with 

these two parameters. 

A linear function of a normal variable is also a normal 

variable, ie if X is normally distributed, so is Y = aX + b .

The graph of a normal distribution, shaped like a bell, is 

shown in Figure.



Standard Normal Distribution
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1.7

The normal distribution with μ = 0 and σ = 1 is referred to as the standard normal distribution.

fx(x) = 
1

2𝜋
 𝑒−

1

2
 𝑥2

         for -∞ < x < ∞

Since the normal distribution plays a basic role in statistics and its density cannot be integrated directly, its 

areas have been tabulated for the special case where μ = 0 and σ = 1.

When X is a normal random variable with mean μ and standard deviation σ, then define Z as a standard 

normal variable, where

Z = 
𝐗 − 𝛍

𝛔

The calculation of a probability for a normal variable is always done the same way – transform to standard 

normal via Z = 
X − μ

σ
 and look up in the tables.



Question 
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CT3 September 2007 Q8

Claim sizes in a certain insurance situation are modelled by a normal distribution with mean μ = £30,000 and 

standard deviation σ = £4,000 The insurer defines a claim to be a large claim if the claim size exceeds 

£35,000.

(i) Calculate the probabilities that the size of a claim exceeds

(a) £35,000, and

(b) £36,000

(ii) Calculate the probability that the size of a large claim (as defined by the insurer) exceeds £36,000. 

(iii) Calculate the probability that a random sample of 5 claims includes 2 which exceed £35,000 and 3 which 

are less than £35,000.



Solution
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Lognormal Distribution
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1.8

If X represents, for example, claim size and Y = logX has a normal distribution, then X is said to have a 

lognormal distribution. (log X here refers to natural log)

fx(x) = 
1

 𝑥 σ 2𝜋
 𝑒−

1

2
 (

log 𝑥−𝜇

𝜎
)2

    for 0 < x < ∞

Notice that the lower limit for x is 0 and not -∞, as it was for the normal distribution.

This is because log x is not defined for values of x below zero.

The lognormal distribution is positively skewed and is therefore a good model for the distribution of claim 

sizes.

The moments of the lognormal distribution are not μ and 𝜎2, but are given by:

E[X] = 𝑒μ+
1

2
𝜎2

Var[X] = 𝑒2μ+𝜎2
 (𝑒𝜎2

− 1)



t Distribution
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1.9

If the variable X has a 𝜒𝑣
2 distribution and another independent variable Z has the standard normal distribution 

of the form N(0,1) then the function:

𝑍

𝑋/𝑣

is said to have a t-distribution with parameter “degrees of freedom” v .

The t-distribution, like the normal, is symmetrical about 0.

To calculate probabilities for t-distribution, we will look up probabilities using page 163 in the Tables.

This distribution is used to find confidence intervals and carry out hypothesis tests on the mean of a 

distribution.



F Distribution
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1.10

Another distribution that plays an important role in connection with sampling from normal populations is the F 

distribution, named after Sir Ronald A. Fisher, one of the most prominent statisticians of the last century.

If two independent random variables, X and Y have 𝜒2 distributions with parameters 𝑛1and 𝑛2 respectively, then 

the function:

𝑋/𝑛1

𝑌/𝑛2

is said to have an F distribution with parameters “degrees of freedom” 𝑛1 and 𝑛﷮2.

We find probabilities by using the F-tables given on pages 170-174 of the Tables.  

This distribution is used to find confidence intervals and carry out hypothesis tests on the variances of 

two distributions.



Waiting Time  Distribution
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2

A Poisson process occurs when we let the time period vary. So instead of looking at the number of events 

occurring per unit time, we now look at the number of events occurring up to time t.

The Poisson process is an example of a counting process. Here the number of events occurring is of interest. 

Since the number of events is being counted over time, the event number process {𝑁(𝑡)}𝑡≥0 must satisfy the 

following conditions.

(i) 𝑁(0) = 0, i.e. no events have occurred at time 0 .

(ii) for any 𝑡 > 0, 𝑁(𝑡) must be integer valued i.e. we can't have 2.3 claims.

(iii) When 𝑠 < 𝑡, 𝑁(𝑠) ≤ 𝑁(𝑡), i.e. the number of events over time is non-decreasing.

(iv) When 𝑠 < 𝑡, 𝑁(𝑡) − 𝑁(𝑠) represents the number of events occurring in the time interval (𝑠, 𝑡).



Waiting Time  Distribution
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2

The event number process {𝑁(𝑡)}𝑡≥0 is defined to be a Poisson process with parameter 𝜆 if the following three 

conditions are satisfied:

(i) 𝑁(0) = 0, and 𝑁(𝑠) ≤ 𝑁(𝑡) when 𝑠 < 𝑡

(ii) 𝑃(𝑁(𝑡 + ℎ) = 𝑟 ∣ 𝑁(𝑡) = 𝑟) = 1 − 𝜆ℎ + 𝑜(ℎ)
𝑃(𝑁(𝑡 + ℎ) = 𝑟 + 1 ∣ 𝑁(𝑡) = 𝑟) = 𝜆ℎ + 𝑜(ℎ)

𝑃(𝑁(𝑡 + ℎ) > 𝑟 + 1 ∣ 𝑁(𝑡) = 𝑟) = 𝑜(ℎ)

(iii) when 𝑠 < 𝑡, the number of events in the time interval ( 𝑠, 𝑡] is independent of the number of events up to 

time 𝑠.



Waiting Time  Distribution
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2

Waiting times between events in a Poisson process

This study of the Poisson process concludes by considering the distribution of the time to the first event, 𝑇1, and 

the times between events, 𝑇2, 𝑇3, …. These inter-event times are often called the waiting times or holding times.

The waiting time between consecutive events in a Poisson distribution has an Exp(𝜆) distribution.

𝑃 𝑇1 > 𝑡  is the probability that no events occur between time 0 and time 𝑡. 

Hence

𝑃 𝑇1 > 𝑡 = 𝑃(𝑁(𝑡) = 0) = exp{−𝜆𝑡}

So, the distribution function of 𝑇1 is

𝐹(𝑡) = 𝑃 𝑇1 ≤ 𝑡 = 1 − exp{−𝜆𝑡}

so that 𝑻𝟏 has an exponential distribution with parameter 𝝀. 

Similarly, 𝑇2 has an exponential distribution with parameter 𝜆 and 𝑇2 is independent of 𝑇1. This calculation can be 

repeated for 𝑇2, 𝑇3, …


	Slide 1
	Slide 2: Today’s Agenda
	Slide 3: Introduction
	Slide 4: Uniform Distribution 
	Slide 5: Gamma Distribution (including exponential and chi-square)  
	Slide 6: Gamma Distribution
	Slide 7: Gamma Distribution
	Slide 8: Exponential Distribution (Gamma with α = 1)
	Slide 9: Exponential Distribution
	Slide 10: Chi-square Distribution
	Slide 11: Useful result
	Slide 12: Beta Distribution
	Slide 13: Normal Distribution
	Slide 14: Normal Distribution
	Slide 15: Standard Normal Distribution
	Slide 16: Question 
	Slide 17: Solution
	Slide 18: Lognormal Distribution
	Slide 19: t Distribution
	Slide 20: F Distribution
	Slide 21: Waiting Time  Distribution
	Slide 22: Waiting Time  Distribution
	Slide 23: Waiting Time  Distribution

