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In this chapter we shall study some of the probability densities that figure most prominently in statistical theory 
and in applications.



Uniform Distribution 
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Gamma Distribution
(including exponential and chi-square)  

5

1.2

 



Gamma Distribution
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Gamma Distribution
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1.2
To get some idea about the shape of the graphs of gamma densities, those for several special values of 
α and β are shown in Figure. Some special cases of the gamma distribution play important roles in 
statistics;



Exponential Distribution (Gamma with α = 1)
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Exponential Distribution
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Chi-square 
Distribution
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Useful result
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Beta Distribution
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Normal Distribution
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1.6
The normal distribution, is in many ways the cornerstone of modern statistical theory. It was investigated first in 
the eighteenth century when scientists observed an astonishing degree of regularity in errors of measurement. 
They found that the patterns (distributions) that they observed could be closely approximated by continuous 
curves, which they referred to as “normal curves of errors” and attributed to the laws of chance.

Many numerical populations have distributions that can be fit very closely by an appropriate normal curve.



Normal Distribution
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1.6
 

The parameter μ is, in fact, E(X) and that the parameter σ 
is, in fact, the square root of var(X), where X is a random 
variable having the normal distribution with these two 
parameters. 

A linear function of a normal variable is also a normal 
variable, ie if X is normally distributed, so is Y = aX + b .

The graph of a normal distribution, shaped like a bell, is 
shown in Figure.



Standard Normal Distribution
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Question 

16

CT3 September 2007 Q8
Claim sizes in a certain insurance situation are modelled by a normal distribution with mean μ = £30,000 and 
standard deviation σ = £4,000 The insurer defines a claim to be a large claim if the claim size exceeds £35,000.

(i) Calculate the probabilities that the size of a claim exceeds
(a) £35,000, and
(b) £36,000

(ii) Calculate the probability that the size of a large claim (as defined by the insurer) exceeds £36,000. 

(iii) Calculate the probability that a random sample of 5 claims includes 2 which exceed £35,000 and 3 which 
are less than £35,000.



Solution
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Lognormal Distribution
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t Distribution
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1.9
 

To calculate probabilities for t-distribution, we will look up probabilities using page 163 in the Tables.

This distribution is used to find confidence intervals and carry out hypothesis tests on the mean of a 
distribution.



F Distribution
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1.10
 

We find probabilities by using the F-tables given on pages 170-174 of the Tables.  

This distribution is used to find confidence intervals and carry out hypothesis tests on the variances of two 
distributions.


