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1. Joint Distributions
1. Joint Probability Density Functions
2. Marginal Probability Functions
3. Conditional probability Functions
4. Independence of Random Variables

2. Expectation of function of two variables

3. Covariance and Correlation coefficient

4. Convolutions

5. Linear  Combinations of Random Variables
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Joint Probability Functions
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1.1
Continuous case

The conditions for a function to qualify as a joint probability density function of a pair of continuous random 
variables are:

f (x,y) ≥ 0 for all values of x and y in the domain
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Independence of Random Variables
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1.4

 

Discrete case
It follows that probability statements about values assumed by (X,Y) can be broken down into statements about X 
and Y separately. So if X and Y are independent discrete variables then:
P(X = x,Y = y) = P(X = x). P(Y = y)

Continuous case
If X and Y are continuous, the double integral required to evaluate a joint probability splits into the product of two 
separate integrals, one for X and one for
Y, and we have:
P(x1 < X < x2, y1 < Y < y2 ) = P(x1 < X < x2 ). P(y1 < Y < y2 )
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Expectations of functions of two 
Variables

14

2

 

Expectations
The expression for the expected value of a function g(X,Y) of the random variables (X,Y) is found by summing 
(discrete case) or integrating (continuous case) the product:

 Value * probability of assuming that value
over all values (or combinations of) (x,y) . The summation is a double summation, the integral a double 
integral.



Expectations of functions of two Variables
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Expectation of a Sum
It follows that:
E [ag(X ) + bh(Y )] = aE [g(X )] + bE [h(Y )]
where a and b are constants.

Expectation of a product
For independent random variables X and Y:
E [g(X). h(Y)] = E [g(X)]. E[h(Y)]
since the joint density function factorises into the two marginal density functions.



Question
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CT3 April 2015 Q8

The random variables X and Y have a joint probability distribution with density function:

(i) Determine the marginal densities of X and Y. 
(ii) State, with reasons, whether X and Y are independent. 
(iii) Determine E[X] and E[Y].
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Covariance and Correlation Coefficient
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Variance of functions of two Variables
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3
Variance of a Sum
For any random variables X and Y:
var[X +Y ] = var[X ] + var[Y ] + 2cov[X,Y ]

For independent random variables, this can be simplified:
var[X +Y ] = var[X ] + var[Y ]
since cov[X,Y ] = 0 .
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CT3 April 2016 Q2

Consider two random variables X and Y.

(i) Write down the precise mathematical definition for the correlation coefficient ρ(X, Y) between X and Y. 

Assume now that Y = aX + b where a < 0 and -∞ < b < ∞.
 
(ii) Determine the value of the correlation coefficient ρ(X, Y).
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