

Class: FY BSc

Subject: Probability & Statistics - 1

Chapter: Unit 4 Chapter 2

Chapter Name: Conditional Expectation

Today's Agenda

- 1. Conditional Expectation
- 1. The Random variable E[Y|X]
 - 1. Mean
 - 2. Variance
- 2. Compound Distributions
 - 1. Moments of Compound Distribution
 - 2. Generating Functions of Compound Distribution

1 Conditional Expectation

The conditional expectation of Y given X = x is the mean of the conditional distribution of Y given X = x. This mean is denoted E[Y|X = x], or just E[Y|X].

For a discrete distribution, this will be:

$$E[Y|X=x] = \sum_{i} y_i \ P[Y=y_i|X=x] = \sum_{i} y_i \ \frac{P[Y=y_i, X=x]}{P[X=x]}$$

For a continuous distribution,

$$E[Y|X = x] = \int_{y}^{x} y \cdot f(y|x) dy = \int_{y}^{x} y \cdot \frac{f(x,y)}{f(x)} dy$$

2.1 The Random Variable E[Y|X]

The conditional expectation $E[Y \mid X = x] = g(x)$, say, is, in general, a function of x. It can be thought of as the observed value of a random variable g(X). The random variable g(X) is denoted $E[Y \mid X]$.

E[Y|X] is also referred to as the regression of Y on X.

 $E[Y \mid X]$, like any other function of X, has its own distribution, whose properties depend on those of the distribution of X itself.

Theor

Theorem: E[E[Y | X]] = E[Y]

Proof:
$$E[E[Y | X]] = \int E[Y|x] f_X(x) dx$$

 $= \int (\int y f(y|x) dy) f_X(x) dx$
 $= \iint y f(x, y) dx dy$
 $= E[Y]$

The random variable var[Y | X] and the "E[V]+ var[E]" result

```
The variance of the conditional distribution of Y given X = x is denoted \text{var}[Y \mid x], where: \text{var}[Y \mid x] = E \left[ \{Y - E[Y \mid X]\}^2 \mid x \right] = E[Y^2 \mid x] - (E[Y \mid X])^2 \text{var}[Y \mid X] \text{ is the observed value of a random variable } \text{var}[Y \mid X] \text{ where: } \text{var}[Y \mid X] = E[Y^2 \mid x] - (E[Y \mid X])^2 = E[Y^2 \mid X] - \{g(X)\}^2 \text{Hence } E[\text{var}[Y \mid X]] = E[E \mid Y^2 \mid X] \mid - E[\{g(X)\}^2] = E[Y^2] - E[\{g(X)\}^2] \text{ and so: } E[Y^2] = E[\text{var}[Y \mid X]] + E[\{g(X)\}^2] So the variance of Y, \text{var}[Y] = E(Y^2) - [E(Y)]^2, is given by: E[\text{var}(Y \mid X)] + E[\{g(X)\}^2] - [E\{g(X)\}]^2 = E[\text{var}(Y \mid X)] + \text{var}[g(X)] i.e. \text{var}[Y] = E[\text{var}[Y \mid X]] + \text{var}[E[Y \mid X]].
```


CT3 September 2015 Q7

X and Y are discrete random variables with joint distribution given below.

$$Y = -1$$
 $Y = 0$ $Y = 1$
 $X = 1$ 0 1/4 0
 $X = 0$ 1/4 1/4

- (i) Determine the conditional expectation E[Y|X = 1].
- (ii) Determine the conditional expectation E[X|Y = y] for each value of y.
- (iii) Determine the expected value of *X* based on your conditional expectation results from part (ii).

(i)
$$E[Y|X=1] = \frac{-1\times0+0\times\frac{1}{4}+1\times0}{\frac{1}{4}} = 0$$

(ii)
$$E[X|Y=-1] = \frac{1\times 0 + 0\times \frac{1}{4}}{\frac{1}{4}} = 0$$
, $E[X|Y=0] = \frac{1\times \frac{1}{4} + 0\times \frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$

$$E[X|Y=1] = \frac{1 \times 0 + 0 \times \frac{1}{4}}{\frac{1}{4}} = 0$$

(iii)
$$E(X) = E[E[X|Y]] = E[X|Y = -1] \times P(Y = -1)$$
$$+E[X|Y = 0] \times P(Y = 0)$$
$$+E[X|Y = 1] \times P(Y = 1)$$
and
$$E(X) = 0 \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} + 0 \times \frac{1}{4} = \frac{1}{4}$$

3 Compound Distributions

Let $S = X_1, X_2,, X_N$ (and S = 0 if N = 0) where the X_i 's are independent, identically distributed (as a variable X) and are also independent of N. S is said to have a compound distribution.

S is the sum of a random number of random quantities, which is the defining feature of a compound distribution.

Illustration: N is the number of claims which arise in a portfolio of business and X_i is the amount of the i'th claim. S is the total claim amount.

3 Compound Distributions

Compound distributions arise commonly in general insurance examples, the random variable N is often referred to as the "number of claims" and the distribution of the random variables $X_1, X_2,, X_N$ is referred to as the "individual claim size distribution", even where the compound distribution arises in another context.

To define a compound distribution, you need to know two components:

- the distribution of N (which is a discrete distribution) and
- the distribution of the Xi 's (which may be any distribution).

When the particular distribution of N is known, a compound distribution is referred to by the name of this distribution eg a compound Poisson distribution.

3.1 Moments of Compound Distributions

The mean and variance of S are easily found.

$$E(S|N = n) = E(X1 + X2 + ... + XN | N = n) = E(X1 + X2 + ... + Xn = n.E(X)$$

Similarly:
 $var(S|N = n) = n.var(X)$
Therefore we have:
 $E(S) = E[E(S|N)] = E[NE(X)] = E(N).E(X)$
and
 $Var(S) = E[var(S|N)] + var[E(S|N)]$
 $= E[N var(X)] + var[N E(X)]$
 $= E(N).var(X) + var(N) [E(X)]^2$

CT3 April 2015 Q3

Assume that in a large portfolio of insurance contracts the claim size is a normally distributed random variable with expected value 1000. Also assume that the number of claims is a random variable following a Poisson distribution with parameter $\lambda = 400$.

- (i) Calculate the expected value of the total claim amount from contracts in this portfolio.
- (ii) Calculate a lower limit for the standard deviation of the total amount of claims from contracts in this portfolio.

Let X be the size of an individual claim, and N be the number of claims.

- (i) Expected total amount is $E[X]E[N] = 1,000 \times 400 = 400,000$
- (ii) $\operatorname{Var}(\operatorname{total\ amount}) = E[N]V[X] + V[N]E[X]^2$

A lower bound for the variance is then obtained by assuming V[X] = 0, that is,

STD(total amount) =
$$\sqrt{V[N]E[X]^2} = 20 \times 1000 = 20,000$$

Generating Function of Compound Distributions

The MGF of *S* is given by:

$$M_S(t) = E(e^{tS}) = E[E(e^{tS} | N)]$$

$$E(e^{tS} | N) = E[exp\{t(X_1, X_2,, X_N)\} | N = n]$$

$$= E[exp\{t(X_1, X_2,, X_n)\}]$$

$$= \prod E[exp(tX_i)]$$

$$= [M_X(t)]^n$$

Therefore we have:

$$M_S(t) = E[\{M_X(t)\}^N] = E[\exp\{N. \log M_X(t)\}] = M_N\{\log M_X(t)\}$$

CT3 September 2010 Q8

A certain type of claim amount (in units of £1,000) is modelled as an exponential random variable with parameter $\lambda = 1.25$. An analyst is interested in S, the total of 10 such independent claim amounts. In particular he wishes to calculate the probability that S exceeds £10,000.

- (i) (a) Show, using moment generating functions, that:
- (1) S has a gamma distribution, and
- (2) 2.5*S* has a χ^2_{20} distribution.
- (b) Use tables to calculate the required probability.

(i) (a) (1) Let X_i be a claim amount.

Mgf of
$$X_i$$
 is $M_X(t) = \left(1 - \frac{t}{1.25}\right)^{-1}$

Mgf of
$$S = \sum_{i=1}^{10} X_i$$
 is $M_S(t) = [M_X(t)]^{10} = \left(1 - \frac{t}{1.25}\right)^{-10}$,

which is the mgf of a gamma(10, 1.25) variable.

(2) Mgf of 2.5S is
$$E[e^{t(2.5S)}] = E[e^{(2.5t)S}] = M_S(2.5t) = (1-2t)^{-10}$$
,

which is the mgf of a gamma(10, $\frac{1}{2}$) variable, i.e. χ^2_{20} .

(b)
$$P(\text{total} > \text{£}10,000) = P(S > 10) = P(\chi_{20}^2 > 25) = 1 - 0.7986 = 0.2014$$

CT3 April 2010 Q9

- The number of claims, *N*, arising over a period of five years for a particular policy is assumed to follow a "Type 2" negative binomial distribution (as in the book of Formulae and Tables page 9)
- Each claim amount, X (in units of £1,000), is assumed to follow an exponential distribution with parameter λ independently of each other claim amount and of the number of claims.

Let S be the total of the claim amounts for the period of five years, in the case k = 2, p = 0.8 and $\lambda = 2$.

(i) Calculate the mean and the standard deviation of S based on the above assumptions.

Now assume that:

- N follows a Poisson distribution with parameter $\mu = 0.5$, that is, with the same mean as N above;
- X follows a gamma distribution with parameters $\alpha = 2$ and $\lambda = 4$, that is, with the same mean as X above.
- (ii) Calculate the mean and the standard deviation of S based on these assumptions.
- (iii) Compare the two sets of answers in (i) and (ii) above.

(i)
$$E[N] = \frac{k(1-p)}{p} = \frac{2(0.2)}{0.8} = 0.5$$
 and $V[N] = \frac{k(1-p)}{p^2} = \frac{2(0.2)}{0.8^2} = 0.625$

$$E[X] = \frac{1}{\lambda} = \frac{1}{2} = 0.5$$
 and $V[X] = \frac{1}{\lambda^2} = \frac{1}{2^2} = 0.25$

$$E[S] = E[N]E[X] = 0.5 \times 0.5 = 0.25$$
, i.e. £250

$$V[S] = E[N]V[X] + V[N]{E[X]}^2 = 0.5 \times 0.25 + 0.625 \times 0.5^2 = 0.28125$$

$$\therefore SD[S] = 0.530$$
, i.e. £530

(ii)
$$E[N] = V[N] = \mu = 0.5$$

$$E[X] = \frac{\alpha}{\lambda} = \frac{2}{4} = 0.5$$
 and $V[X] = \frac{\alpha}{\lambda^2} = \frac{2}{4^2} = 0.125$

$$E[S] = E[N]E[X] = 0.5 \times 0.5 = 0.25$$
, i.e. £250

$$V[S] = E[N]V[X] + V[N]\{E[X]\}^{2} = 0.5 \times 0.125 + 0.5 \times 0.5^{2} = 0.1875$$

$$\therefore SD[S] = 0.433$$
, i.e. £433

(iii) As expected the means are the same, but the standard deviation in (i) is larger than that in (ii) due to the fact that both N and X have larger variances.