

Subject: Probability & Statistics - 1

Chapter: Unit 3

Category: Practice Questions

IACS

1. CT3 April 2005 Q3

Claim sizes in a certain insurance situation are modelled by a distribution with moment generating function M(t) given by

$$M(t)=(1-10t)^{-2}$$

Show that $E(X^2) = 600$ and find the value of $E(X^3)$

Ans:

$$E(X^3) = 24000$$

2. CT3 September 2008 Q3

(i) Let Y be the sum of two independent random variables X_1 and X_2 , that is,

$$Y = X_1 + X_2.$$

Show that the moment generating function (mgf) of Y is the product of the mgfs of X_1 and X_2 .

(ii) Let X_1 and X_2 be independent gamma random variables with parameters (α_1 , λ) and (α_2 , λ), respectively.

Use mgfs to show that $Y=X_1+X_2$ is also a gamma random variable and specify its parameters.

Ans:

- (i) $E(e^{tX_1}) E(e^{tX_2}) = M_{X1}(t) * M_{X2}(t)$
- (ii) $M_{Xi}(t) = (1 1/\lambda)^{-\alpha i}$
- (iii) Therefore, $M_Y(t) = (1 1/\lambda)^{-(\alpha 1 + \alpha 2)}$ So that Y is a gamma r.v. with parameters $(\alpha 1 + \alpha 2, \lambda)$

3. CT3 April 2009 Q11

The number of claims, X, which arise in a year on each policy of a particular class is to be modelled as a Poisson random variable with mean λ .

Let
$$X = (X_1, X_2, ..., X_n)$$

be a random sample from the distribution of X, and let

P&S1 UNIT 3

PRACTICE QUESTIONS

IACS

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- (i) (a) Use moment generating functions to show that $\sum_{i=1}^{n} X_i$ has a Poisson distribution with mean $n\lambda$.
- (b) State, with a brief reason, whether or not the variable $2X_1 + 5$ has a Poisson distribution.

Ans:

- (i) (a)
 - (b) No One reason is that $E[2X_1 + 5] = 2\lambda + 5$, which is not equal to $V[2X_1 + 5] = 4\lambda$ [Note: another obvious reason is that $2X_1 + 5$ can only takes values 5, 7, 9, ..., not 0, 1, 2, 3,...]

4. CT3 September 2009 Q3

Let X be a random variable with moment generating function MX(t) and cumulant generating function CX(t), and let Y = aX + b, where a and b are constants. Let Y have moment generating function MY(t) and cumulant generating function CY(t).

- (i) Show that $C_Y(t) = bt + C_X(at)$
- (ii) Find the coefficient of skewness of Y in the case that $M_X(t)=(1-t)^{-2}$ and Y=3X+2 (you may use the fact that $C_Y'''(0)=E[(Y-\mu_Y)^3]$)

Ans:

- (i) –
- (ii) 1.414

5. CT3 April 2014 Q4

Let *X* be a random variable with probability density function:

$$f(x)=egin{cases} rac{1}{2}e^x & ; & x\leq 0 \ rac{1}{2}e^{-x} & ; & x>0 \end{cases}$$

(i) Show that the moment generating function of X is given by:

P&S1 UNIT 3

PRACTICE QUESTIONS

IACS

$$M_X(t)=(1-t^2)^{-1}$$
 for $|t|<1$

(ii) Hence find the mean and the variance of X using the moment generating function in part (i).

Ans:

(ii)
$$E(X)=0, V(X)=2$$

6. CS1A September 2020 Q4

A random variable Y has probability density function

$$f(y) = ae^{-5y}, y > b,$$

where a, b are positive constants.

The moment generating function of Y is denoted by My(t)

- (i) Write down the bounds of the integration required to calculate $M_Y(t)$.
- (ii) Identify which one of the following options gives the correct expression for $M_Y(t)$

A1
$$a^{\frac{e^{-(1-5t)b}}{1-5t}}$$

A2
$$\frac{a}{b} \frac{e^{-(1-5t)b}}{1-5t}$$

A3
$$\frac{a}{b} \frac{e^{-(5-t)b}}{5-t}$$

A4
$$a^{\frac{e^{-(5-t)b}}{5-t}}$$

- (iii) Write down the condition on t for MY(t) to be finite.
- (iv) Determine an expression giving the constant a in terms of b, using your answer for $M_Y(t)$ from part (ii).

P&S1 UNIT 3

Ans:

- Integrate from b to plus infinity (i)
- **A4** (ii)
- t < 5(iii)
- Evaluating the function at t = 0 gives 1 (iv)

We obtain $a = 5e^{(5b)}$

7. CS1A September 2021 Q7

Let X_i , i=1,2,...,n be independent random variables, each following an exponential distribution with parameter b. We consider the random variable $Y = \sum_{i=1}^{n} X_i$

(i) Justify why $M_Y(t)$, the moment generating function (MGF) of variable Y, is given by

$$M_Y(t) = (1 - t/b)^{-n}$$

Let Z be a random variable such that the MGF of Z is $M_z(t) = \sqrt{M_Y(t)}$

(ii) Determine the value of b for which Z follows a chi-square distribution, specifying the degrees of freedom of the chi-square distribution.

Ans:

- (i)
- & QUANTITATIVE STUDII b=0.5 with 'n' degrees of freedom (ii)

8. **CS1A April 2023 Q3**

An Actuary determines that the claim size for a certain class of accident is a random variable, X, with moment-generating function:

$$M_X(t) = \frac{1}{(1-2500t)^4}$$
, where t < 1/2500

Determine, using Mx(t), the standard deviation of the claim size for this class of accident.

Ans:

$$SD = 5,000$$

P&S1 UNIT 3

PRACTICE QUESTIONS