

Subject: Probability and Statistics - I

Chapter: Unit 4

Category: Practice Questions

IACS

1. CT3 September 2012 Question 4

Consider a random variable U that has a uniform distribution on (0,1) and a random variable X that has a standard normal distribution. Assume that U and X are independent.

Determine an expression for the probability density function of the random variable Z = U + X in terms of the cumulative distribution function of X.

Ans: $F_X(z)-F_X(z-1)$

where we have used the substitution u = z - x, and where F_X is the distribution function of X.

2. CT3 April 2014 Question 7

Let X and Y be two continuous random variables.

i. Prove that E[E[Y|X]] = E[Y].

Suppose the number of claims, N, on a policy follows a Poisson distribution with mean μ , and the amount of the i^{th} claim, X_i , follows a Gamma distribution with parameters α and λ . Let S denote the total value of claims on a policy in a given year.

ii. Derive the mean of S using the result in part (i).

Suppose $\mu = 0.15$, $\alpha = 100$, and $\lambda = 0.1$.

iii. Calculate the variance of S.

Ans:

- (i) -
- (ii) $E(S) = \mu \alpha / \lambda$
- (iii) V(S) = 151,500

3. CT3 September 2014 Question 5

Consider two random variables X and Y with E[X] = 2, V[X] = 4, E[Y] = -3, V[Y] = 1, and Cov[X, Y] = 1.6.

Calculate:

P&S1 UNIT 4

- (i) the expected value of 5X + 20Y.
- (ii) the correlation coefficient between X and Y.
- (iii) the expected value of the product XY.
- (iv) the variance of X Y.

Ans:

- (i) E(5X + 20Y) = -50
- (ii) Corr(X,Y)=0.8
- (iii) E(XY) = -4.4
- (iv) V(X-Y)=1.8

4. CT3 April 2015 Question 8

The random variables X and Y have a joint probability distribution with density function:

$$f_{xy}(x, y) = \begin{cases} 3x, \ 0 < y < x < 1 \\ 0, \ \text{otherwise} \end{cases}$$

- i. Deter<mark>mi</mark>ne the mar<mark>gi</mark>nal densities of X and Y.
- ii. State, with reasons, whether X and Y are independent.
- iii. Determine E[X] and E[Y].

Ans:

(i)
$$f_X(x) = \int_0^x 3x dy = [3xy]_{y=0}^{y=x} = 3x^2 \text{ for } 0 < x < 1$$

$$f_Y(y) = \int_{y}^{1} 3x dx = \left[\frac{3}{2}x^2\right]_{x=y}^{x=1} = \frac{3}{2}(1-y^2) \text{ for } 0 < y < 1$$

- (ii) Not independent because $f_X(x)f_Y(y) \neq f_{XY}(x,y)$
- (iii) E(X)=0.75, E(Y)=3/8

P&S1 UNIT 4

5. CT3 September 2015 Question 7

X and Y are discrete random variables with joint distribution given below.

$$Y=-1$$
 $Y=0$ $Y=1$
 $X=1$ 0 1/4 0
 $X=0$ 1/4 1/4 1/4

- i. Determine the conditional expectation E[Y|X = 1].
- Determine the conditional expectation E[X|Y = y] for each value of y. ii.
- iii. Determine the expected value of X based on your conditional expectation results from part

(ii).

Ans:

- E[Y|X = 1] = 0(i)
- E[X|Y = -1] = 0, E(X|Y=0)=1/2, E(X|Y=1)=0(ii)
- E(X) = 1/4(iii)

INSTITUTE OF ACTUARIAL

CT3 September 2016 Question 6

Let X and Y be random variables with joint probability distribution:

$$f_{XY}(x, y) = \begin{cases} kx^2y^2, & 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

where k is a constant.

- Show that k = 18.
- ii. Determine $f_Y(y)$, the marginal density function of Y.
- iii. Determine P(X > 0.5|Y = 0.75).

Ans:

- (i)
- (ii) $f_{Y}(y) = 6y^{5}$
- P(X > 0.5|Y = 0.75) = 0.7037(iii)

IACS

7. CT3 April 2017 Question 3

Consider two random variables X and Y and assume that X and Y both follow a standard normal distribution but are not independent. Define the random variables:

$$Z^-=X-Y$$
 and $Z^+=X+Y$

- i. Determine the covariance between Z⁻ and Z⁺
- ii. Determine whether Z- and Z+ are uncorrelated based on your answer in part (i).

Ans:

- (i) $Cov(Z^-, Z^+) = 0$
- (ii) Since corr(Z^- , Z^+) = cov(Z^- , Z^+) /{sd(Z^-) sd(Z^+)} it follows that Z^- and Z^+ are uncorrelated.

8. CT3 April 2018 Question 9

The random variables X and Y have joint probability density function (pdf)

$$f_{X,Y}(x,y) = \begin{cases} 24x^3y & \text{for } 0 < x < y < 1, \\ 0 & \text{otherwise.} \end{cases}$$

i. (a) Sh<mark>ow t</mark>hat the marginal pdf of X is

$$f_X(x) = 12x^3 (1-x^2), 0 < x < 1.$$

- (b) Show that the marginal pdf of Y is $f_Y(y) = 6y^5$, 0 < y < 1.
- ii. Determine the covariance cov (X, Y).
- iii. Determine the conditional pdf $f_{(Y)}(x|y)$ together with the range of X for which it is defined.
- iv. Determine the conditional probability $P\left(X > 1/3 \mid Y = \frac{1}{2}\right)$
- v. Determine the conditional expectation $E\left(X \mid Y = \frac{1}{4}\right)$
- vi. Verify that E[E[X | Y]] = E[X] by evaluating each side of the equation.

Ans:

P&S1 UNIT 4

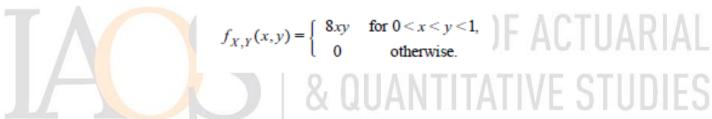
- (i) -
- (ii) Cov(X,Y)=3/245
- (iii) $f_{X|Y}(x|y) = 4x^3y^{-4}$
- (iv) $P(X > 1/3 \mid Y = \frac{1}{2}) = 65/81$
- (v) $E(X \mid Y = \frac{1}{4}) = (4/5)y$
- (vi) -

9. CS1 April 2019 Question 6

Let X and Y be two continuous random variables.

i. State the definition of independence of the random variables X and Y in terms of their joint probability density function.

The joint probability density function of X and Y is given by:



- ii. (a) Determine the marginal density functions of X and Y.
 - (b) State whether or not X and Y are independent based on your answer in part (ii)(a).
- iii. Derive the conditional expectation E[X | Y = y].

Ans:

(i) The random variables *X* and *Y* are independent if, and only if, the joint pdf is the product of the

two marginal pdfs for all (x,y) in the range of the variables, i.e.

 $f_{XY}(x,y) = f_X(x) * f_Y(y)$ for all (x, y) in the range.

- (ii) (a) $f_X(x) = 4x(1-x^2)$, 0 < x < 1 $f_Y(y) = 4y^3$, 0 < y < 1
 - (b) Here, $f_{X,Y}(x,y) \neq f_X(x) f_Y(y)$ so X and Y are not independent.
- (iii) E(X|Y=y)=(2/3)y, 0 < y < 1

P&S1 UNIT 4

10. CS1 September 2019 Question 4

X and Y are discrete random variables with joint distribution as follows:

	X = 0	X = 1	<i>X</i> = 3
Y = -1	0.08	0.03	0.00
Y = 0	0.03	0.12	0.20
<i>Y</i> = 3	0.11	0.11	0.06
Y = 4.5	0.04	0.20	0.02

- i. Calculate:
 - (a) E(Y | X = 1)
 - (b) Var(X | Y = 3).
- ii. Calculate the probability functions of the marginal distributions for X and Y.
- iii. Determine whether X and Y are independent.

Ans:

- (i) (a) $E(Y \mid X = 1) = 2.6087$
 - (b) $Var(X \mid Y = 3) = 1.2487$
- (ii) P(X = 0) = 0.26, P(X = 1) = 0.46, P(X = 3) = 0.28

$$P(Y = -1) = 0.11$$
, $P(Y = 0) = 0.35$, $P(Y = 3) = 0.28$, $P(Y = 4.5) = 0.26$

(iii)
$$P(X = 0, Y = -1) = 0.08 \neq P(X = 0) \times P(Y = -1)$$

Correct conclusion that X and Y are NOT independent

11. CS1 April 2021 Question 2

Consider two random variables, X and Y. The conditional expectation and conditional variance of Y given X are denoted by the two random variables U and V, respectively; that is,

INSTITUTE OF ACTUARIAL

$$U = E[Y|X]$$
 and $V = Var[Y|X]$.

Assume that Y is Normally distributed with expectation 5 and variance 4. Also assume that the expectation of V is 2.

- i. Calculate the expected value of U.
- ii. Calculate the variance of U.

P&S1 UNIT 4

Ans:

(i)
$$E(U)=E(Y)=5$$

(ii)
$$V(U)=2$$

12. CS1 April 2021 Question 5

The joint probability density function of random variables X and Y is:

$$f(x,y) = \begin{cases} ke^{-(x+2y)}, & x > 0, y > 0\\ 0, & \text{otherwise} \end{cases}$$

[Hint: You may find it helpful to define the functions $g_X(x) = e^{-x}$ and $g_Y(y) = e^{-2y}$, using this notation in your answers]

- i. Demonstrate that X and Y are independent.
- ii. Verify that k = 2
- iii. Demonstrate that $f_Y(y)$, the marginal density function of Y, is:

iv. Demonstrate that the conditional density function f(y|Y > 3) is:

$$f(y|Y > 3) = 2e^{6-2y}$$
 for $y > 3$.

[**Hint:** Consider $P(Y \le y | Y > 3)$.]

v. Identify which **one** of the following expressions is equal to the conditional expectation E[Y|Y>3]:

A
$$\int_0^\infty t e^{-2t} dt + \int_0^\infty 3e^{-2t} dy$$

$$B \qquad \int_0^\infty t e^{-2t} dt + \int_0^\infty 6e^{-2t} dy$$

C
$$\int_0^\infty 2te^{-2t}dt + \int_0^\infty 3e^{-2t}dy$$

D
$$\int_0^\infty 2te^{-2t}dt + \int_0^\infty 6e^{-2t}dy$$

P&S1 UNIT 4

IACS

- vi. Determine the value of the conditional expectation E[Y|Y > 3].
- vii. Identify which **one** of the following options is the conditional expectation E[Y2|Y > 3]:

A 12.5

B 13.5

C 14.5

D 15.5

viii. Determine the conditional variance Var[Y|Y > 3].

Ans:

(i)
$$fx_1y = ke^{-x}e^{-2y}, x>0, y>0$$

The density function is expressed as a product of a function of x and y. Therefore, the joint probability function is a product of the two marginal probability functions for all (x,y) in the range of the variables hence X and Y are independent

(ii) -

(iii) –

(iv) -

(v) D

(vi) E[Y|Y>3]=3.5

(vii) [

(viii) Var[Y|Y > 3] = 0.25

INSTITUTE OF ACTUARIAL& QUANTITATIVE STUDIES

14. CS1A April 2022 Q1

The number of emails, X, to be replied to in a day by an employee of the customer service centre of an insurance company is modeled as a Poisson random variable with mean 25.

The time (in minutes), Y, that the employee takes to reply to x emails is modeled as a random variable with conditional mean and variance given by:

$$E(Y|X = x) = 3x + 11$$
 and $Var(Y|X = x) = x + 9$.

Calculate the unconditional variance of the time, Y, that the employee takes to reply to emails in a day.

Ans: Var (Y) = 259

P&S1 UNIT 4

15. CS1A April 2024 Q1

The following table shows possible realisations, x, of a random variable, X, the probabilities for these realisations and the conditional expectations and variances of a random variable, Y, conditionally on X = x.

Realisation (x)	10	20	40
P(X=x)	0.4	0.4	0.2
E[Y X=x]	2	8	10
V[Y X=x]	1	2	3

(i) Identify which one of the following options gives the correct values of the unconditional expectations of X and Y:

A. E(X) = 20 and E(Y) = 6

B. E(X) = 20 and E(Y) = 4

C. E(X) = 24 and E(Y) = 6

D. E(X) = 24 and E(Y) = 4.

(ii) Calculate the unconditional variance of Y.

Ans:

- (i) A
- (ii) (ii) V(Y) = 13

16. CS1 April 2024 Q3

X and Y are discrete random variables with joint distribution given in the table below.

	Y = -3	Y = -2	Y = -1	Y = 0
X = 1	2/5	0	1/10	0
X = 2	1/5	1/10	0	1/5

ISTITUTE OF ACTUARIAL

P&S1 UNIT 4

(i) Identify which **one** of the following options gives the correct value of the conditional expectation E[Y|X=2]

- A -2.2
- B 1.8
- C -1.6
- D -0.3. [2]
- (ii) Determine the conditional expectation $E[X \mid Y = y]$ for each value of y. [4]
- (iii) Calculate the expected value of X using your result from part (ii). [2]

Ans:

(i) C

(ii)

<u> </u>	Y = -3	Y = -2	Y = -1	Y = 0
E [X Y =y]	4/3	2	1	2

INSTITUTE OF ACTUARIAL

(iii) E(X) = 3/2]