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Introduction1

• Previously we used the method of moments and the method of maximum likelihood to obtain estimates for 

the population parameter(s). For example, we might have the following numbers of claims from a certain 

portfolio that we receive in 100 different monthly periods:

• Assuming a Poisson distribution with parameter 𝜇 for the number of claims in a month, our estimate of 𝜇 

using the methods given in the previous chapter would be 𝜇 = ҧ𝑥 = 2.37.

• The problem is that this might not be the correct value of 𝜇 . In this chapter we look at constructing 

confidence intervals that have a high probability of containing the correct value. For example, a 95% 

confidence interval for 𝜇 means that there is a 95% probability that it contains the true value of 𝜇.



Introduction1

• Although point estimation is a common way in which estimates are expressed, it leaves room for many 

questions. For instance, it does not tell us on how much information the estimate is based, nor does it tell us 

anything about the possible size of the error. Thus, we might have to supplement a point estimate ෠𝜃 of θ 

with the size of the sample and the value of var(෡Θ) or with some other information about the sampling

• distribution of ෡Θ. As we shall see, this will enable us to appraise the possible size of the error.

• Alternatively, we might use interval estimation. An interval estimate of θ is an interval of the form ෠𝜃1 < 𝜃 <
෠𝜃2, where ෠𝜃1 and ෠𝜃2 are values of appropriate random variables ෡Θ1 and ෡Θ2.



Confidence Intervals2
• A confidence interval provides an ‘interval estimate’ of an unknown parameter (as opposed to a ‘point 

estimate’). It is designed to contain the parameter’s value with some stated probability. The width of the 

interval provides a measure of the precision accuracy of the estimator involved.

• A 𝟏𝟎𝟎 𝟏 − 𝜶 % confidence interval for 𝜃is defined by specifying random variables ෡𝜽𝟏 𝑿 , ෡𝜽𝟐(𝑿) such that 

𝑷 ෡𝜽𝟏 𝑿 < 𝜽 < ෡𝜽𝟐 𝑿 = 𝟏 − 𝜶.

• Rightly or wrongly, 𝛼 = 0.05 leading to a 95% confidence interval, is by far the most common case used in 

practice and we will tend to use this in most of our illustrations.

• Thus 𝑷 ෡𝜽𝟏 𝑿 < 𝜽 < ෡𝜽𝟐 𝑿 = 𝟎. 𝟗𝟓 specifies (෡𝜽𝟏 𝑿 , ෡𝜽𝟐(𝑿)) as a 95% confidence interval for 𝜽 . This 

emphasises the fact that it is the interval and not 𝜽 that is random. In the long run, 95% of the realisations of 

such intervals will include 𝜽 and 5% of the realisations will not include 𝜽.



Confidence Intervals2
• Confidence intervals are not unique. In general they should be obtained via the sampling distribution of a 

good estimator, in particular the maximum likelihood estimator. Even then there is a choice between one-

sided and two-sided intervals and between equal-tailed and shortest-length intervals although these are 

often the same, eg for sampling distributions that are symmetrical about the unknown value of the 

parameter.



Derivation of confidence intervals3

The pivotal method

• There is a general method of constructing confidence intervals called the pivotal method.

• This method requires the finding of a pivotal quantity of the form 𝑔(𝑋, 𝜃) with the following properties:

i. it is a function of the sample values and the unknown parameter 𝜃
ii. its distribution is completely known

iii. it is monotonic in 𝜃.

• The distribution in condition (2) must not depend on 𝜃. ‘Monotonic’ means that the function either 

consistently increases or decreases with 𝜃.



Derivation of confidence intervals3
• The equation

න
𝒈𝟏

𝒈𝟐

𝒇 𝒕 𝒅𝒕 = 𝟎. 𝟗𝟓 

• (where 𝑓(𝑡) is the known probability (density) of𝑔(𝑋, 𝜃)) defines two values, 𝑔1 and 𝑔2, such that

𝑷 𝒈𝟏 < 𝒈 𝑿, 𝜽 < 𝒈𝟐 = 𝟎. 𝟗𝟓
• 𝑔1 and 𝑔2 are usually constants.

• We are assuming here that X has a continuous distribution. We will look at examples based on discrete 

distributions.



Derivation of confidence intervals3

• If 𝒈(𝑿, 𝜽) is monotonic increasing in 𝜽 , then:

• 𝒈 𝑿, 𝜽 < 𝒈𝟐 ⇔ 𝜽 < 𝜽𝟐 for some number 𝜽𝟐

• 𝒈𝟏 < 𝒈 𝑿, 𝜽 ⇔ 𝜽𝟏 < 𝜽 for some number 𝜽𝟏

• and if 𝒈 𝑿, 𝜽  is monotonic decreasing in 𝜽,then:

• 𝒈 𝑿, 𝜽 < 𝒈𝟐 ⇔ 𝜽𝟏 < 𝜽 

• 𝒈𝟏 < 𝒈 𝑿, 𝜽 ⇔ 𝜽 < 𝜽𝟐

• resulting in (𝜽𝟏, 𝜽𝟐) being a 95% confidence interval for 𝜽.

• Fortunately in most practical situations such quantities 𝒈 𝑿, 𝜽  do exist, although an approximation to the 

method is needed for the binomial and Poisson cases.



Derivation of confidence intervals3

• In sampling from a 𝑵(𝝁, 𝝈𝟐) distribution with known value of 𝝈𝟐, a pivotal quantity is:
ഥ𝑿 − 𝝁

𝝈/√𝒏
• which is N(0,1).

• For example, given a random sample of size 20 from the normal population 𝑵(𝝁, 𝟏𝟎𝟐) which yields a sample 

mean of 62.75, an equal-tailed 95% confidence interval for 𝜇 is:

ഥ𝑿 ± 𝟏. 𝟗𝟔
𝝈

𝒏
= 𝟔𝟐. 𝟕𝟓 ± 𝟏. 𝟗𝟔

𝟏𝟎

𝟐𝟎
= 𝟔𝟐. 𝟕𝟓 ± 𝟒. 𝟑𝟖

• This is a symmetrical confidence interval since it is of the form 𝜃 ± 𝛽 . For symmetrical confidence intervals, 

we can write down the interval using the ‘ ± ‘ notation, where the two values indicate the upper and lower 

limits. Alternatively, we can write this confidence interval in the form (58.37,67.13) . Here we are using the 

pivotal quantity 
ഥ𝑿−𝝁

𝟏𝟎/√𝟐𝟎
 , which has a N(0,1) distribution, irrespective of the value of 𝜇.

• The normal mean illustration shows that confidence intervals are not unique.

• Another 95% interval, with unequal tails, is ഥ𝑿 − 𝟏. 𝟖𝟖𝟎𝟖
𝝈

𝒏
, ഥ𝑿 + 𝟐. 𝟎𝟓𝟑𝟕

𝝈

𝒏
.

• However, there would not be much reason to use this one in practice.



Confidence limits4

• The 95% confidence interval ഥ𝑿 − 𝟏. 𝟗𝟔
𝝈

𝒏
, ഥ𝑿 + 𝟏. 𝟗𝟔

𝝈

𝒏
 is often expressed as:

ഥ𝑿 ± 𝟏. 𝟗𝟔
𝝈

𝒏

• This is quite informative as it gives the point estimator ത𝑋 together with the indication of its accuracy. 

However, this cannot always be done so simply using a confidence interval. 

• Also one-sided confidence intervals correspond to specifying an upper or lower confidence limit only.



Sample size5
• A very common question asked of a statistician is:

• ‘How large a sample is needed?’

• This question cannot be answered without further information, namely:

i. the accuracy of estimation required

ii. an indication of the size of the population standard deviation 𝜎.

• The latter information may not readily be available, in which case a small pilot sample may be needed or a 

rough guess based on previous studies in similar populations.

• As a consequence of the Central Limit Theorem, a confidence interval that is derived from a large sample will 

tend to be narrower than the corresponding interval derived from a small sample, since the variation in the 

observed values will tend to ‘average out’ as the sample size is increased. Market research companies often 

need to be confident that their results are accurate to within a given margin (eg ±3%). In order to do this, 

they will need to estimate how big a sample is required in order to obtain a narrow enough confidence 

interval.



Confidence intervals for the normal distribution6

The mean
• The previous section dealt with confidence intervals for a normal mean 𝜇 in the case where the standard 

deviation 𝜎 was known. In practice this is unlikely to be the case and so we need a different pivotal quantity 

for the realistic case when 𝜎 is unknown.

• Fortunately there is a similar pivotal quantity readily available and that is the t result:
ഥ𝑿 − 𝝁

𝑺/√𝒏
~𝒕𝒏−𝟏

• where S is the sample standard deviation.

• The resulting confidence interval, in the form of symmetrical 95% confidence limits, is:

ഥ𝑿 ± 𝒕𝟎.𝟎𝟐𝟓,𝒏−𝟏

𝑺

𝒏
• 𝒕𝟎.𝟎𝟐𝟓,𝒏−𝟏 is used to denote the upper 2.5% point of the t distribution with 𝑛 − 1 degrees of freedom, and is 

defined by:

• 𝑷 𝒕𝒏−𝟏 > 𝒕𝟎.𝟎𝟐𝟓,𝒏−𝟏 = 𝟎. 𝟎𝟐𝟓

• For example, from the Tables 𝒕𝟎.𝟎𝟐𝟓,𝟏𝟎 , is equal to 2.228.



Confidence intervals for the normal distribution6

The mean
• This is a small sample confidence interval for 𝜇 . For large samples 𝑡𝑛−1 becomes like N(0,1) and the Central 

Limit Theorem justifies the resulting interval without the requirement that the population is normal.

• The normality of the population is an important assumption for the validity of the t interval especially when 

the sample size is very small, for example, in single figures. However the t interval is quite robust against 

departures from normality especially as the sample size increases. Normality can be checked by inspecting a 

diagram, such as a dotplot, of the data. This can also be used to identify substantial skewness or outliers 

which may invalidate the analysis.



Confidence intervals for the normal distribution6

The variance
• For the estimation of a normal variance 𝜎2 , there is again a pivotal quantity readily available:

𝒏 − 𝟏 𝑺𝟐

𝝈𝟐 ~𝝌𝒏−𝟏
𝟐

• The resulting 95% confidence interval for the variance 𝜎2 is:

𝒏 − 𝟏 𝑺𝟐

𝝌𝟎.𝟎𝟐𝟓,𝒏−𝟏
𝟐 ,

𝒏 − 𝟏 𝑺𝟐

𝝌𝟎.𝟗𝟕𝟓,𝒏−𝟏
𝟐

• or for the standard deviation 𝜎2:

𝒏 − 𝟏 𝑺𝟐

𝝌𝟎.𝟎𝟐𝟓,𝒏−𝟏
𝟐 ,

𝒏 − 𝟏 𝑺𝟐

𝝌𝟎.𝟗𝟕𝟓,𝒏−𝟏
𝟐

• Note: Due to the skewness of the 𝜒2 distribution, these confidence intervals are not symmetrical about the 

point estimator 𝑆2 , and are also not the shortest-length intervals. So we can’t write these using the ‘ ± ‘ 

notation.

• The above intervals require the normality assumption for the population but are considered fairly robust 

against departures from normality for reasonable sample sizes.



Confidence intervals for binomial & Poisson parameters7

• Both these situations involve a discrete distribution which introduces the difficulty of probabilities not being 

exactly 0.95, and so ‘at least 0.95’ is used instead. Also when not using the large-sample normal 

approximations, the pivotal quantity method must be adjusted.

• One approach is to use a quantity h(X ) whose distribution involves 𝜃 such that:

𝑷 𝒉𝟏 𝜽 < 𝒉 𝑿 < 𝒉𝟐 𝜽 ≥ 𝟎. 𝟗𝟓

• Then if both ℎ1 𝜃  and ℎ2(𝜃) are monotonic increasing (or both decreasing), the inequalities can be inverted 

to obtain a confidence interval as before.



Binomial Distribution8

• If X is a single observation from Bin(n,𝜃) , the maximum likelihood estimator is:

෡𝜽 =
𝑿

𝒏
• What follows is a slight diversion from our aim of obtaining a confidence interval for 𝜃. It is just 

demonstrating that the method is sound.

• Using X as the quantity ℎ(𝑋) , it is necessary to find if ℎ1(𝜃) and ℎ2(𝜃) exist such that 𝑃൫

൯

ℎ1 𝜃 < 𝑋 <

ℎ2 𝜃 ≥ 0.95, where with equal tails 𝑃 𝑋 ≤ ℎ1 𝜃 ≤ 0.025 and 𝑃 𝑋 ≥ ℎ2 𝜃 ≤ 0.025.



Binomial Distribution8

• There is no explicit expression for the pivotal quantity h(𝑋).

• For the Bin (20,0.3) case:

𝑃 𝑋 ≤ 1 = 0.0076 and P X ≤ 2 = 0.0355 ∴ ℎ1 𝜃 = 1

• Also:

𝑃 𝑋 ≥ 11 = 0.0171 , P(X ≥ 10) = 0.0480 ∴ ℎ2 𝜃 = 11

• So ℎ1(𝜃) and ℎ2 𝜃  do exist and increase with 𝜃.

• Therefore the inequalities can be inverted as follows:

𝑋 ≤ ℎ1 𝜃 ⇒ 𝜃 ≥ 𝜃1(𝑋)
𝑋 ≥ ℎ2 𝜃 ⇒ 𝜃 ≤ 𝜃2(𝑋)

• These are the tail probabilities. So the inequalities involving 𝜃1 and 𝜃2 are defining the tails. Our confidence 

interval is the region not covered by these tail inequalities:

• This gives a 95% confidence interval of the form 𝜃2 𝑋 < 𝜃 < 𝜃1(𝑋).

• Note: The lower limit 𝜃2(𝑋) comes from the upper tail probabilities and the upper limit 𝜃1 𝑋  from the lower 

tail probabilities.



Binomial Distribution8

• However since there are no explicit expressions for ℎ1(𝜃) and ℎ2(𝜃), there are no expressions for 𝜃1(𝑋) and 

𝜃2(𝑋) and they will have to be calculated numerically.

• So, adopting the convention of including the observed x in the tails, 𝜃1 and 𝜃2 can be found by solving:

෍

𝒓=𝒙

𝒏

𝒃 𝒓: 𝒏, 𝜽𝟏 = 𝟎. 𝟎𝟐𝟓 𝒂𝒏𝒅 ෍

𝒓=𝟎

𝒙

𝒃 𝒓; 𝒏, 𝜽𝟐 = 𝟎. 𝟎𝟐𝟓

• Here 𝑏(𝑟; 𝑛, 𝜃) denotes 𝑃(𝑋 = 𝑟) when 𝑋~𝐵𝑖𝑛(𝑛, 𝜃)

• These can be expressed in terms of the distribution function 𝐹(𝑥; 𝜃):

𝟏 − 𝑭 𝒙 − 𝟏; 𝜽𝟏 = 𝟎. 𝟎𝟐𝟓 𝒂𝒏𝒅 𝑭 𝒙; 𝜽𝟐 = 𝟎. 𝟎𝟐𝟓

• Note: Equality can be attained as 𝜃 has a continuous range (0,1) and the ‘discrete’ problem does not arise.



The normal approximation9

• It is no bother for a computer to calculate an exact confidence interval for the binomial parameter p even if n 

is ‘large’. However, on a piece of paper we use the normal approximation to the binomial distribution.

•
𝑿−𝒏𝜽

𝒏𝜽 𝟏−𝜽
 can be used as a pivotal quantity.

• Solving the resulting equations for 𝜃 would not be easy.

• However 
𝑿−𝒏𝜽

𝒏෡𝜽 𝟏−෡𝜽

, with ෠𝜃 in place of 𝜃 (in the denominator only), can be used in a simpler way and yields 

the standard 95% confidence interval used in practice, namely:

𝑿 ± 𝟏. 𝟗𝟔 𝒏෡𝜽 𝟏 − ෡𝜽

𝒏

or ෡𝜽 ± 𝟏. 𝟗𝟔
෡𝜽 𝟏 − ෡𝜽

𝒏
,  where ෡𝜽 =

𝑿

𝒏



Poisson Distribution10
• The Poisson situation can be tackled in a very similar way to the binomial for both large and small sample 

sizes.

• If 𝑋𝑖 , 𝑖 = 1,2, … , 𝑛 are independent Poi (𝜆) variables, that is, a random sample of size n from Poi(𝜆) , then 

∑𝑋𝑖~𝑃𝑜𝑖(𝑛𝜆).

• Using ∑𝑋𝑖 as a single observation from Poi (n𝜆) is equivalent to the random sample of size n from Poi (𝜆). This 

is similar to the single binomial situation. Recall that a Bin(n,p) distribution arises from the sum of n Bernoulli 

trials with probability of success p.

• Given a single observation X from a Poi (𝜆) distribution, then 𝑃 ℎ1 𝜆 < 𝑋 < ℎ2 𝜆 ≥ 0.95, where ℎ1(𝜆) and 

ℎ2(𝜆) are increasing functions of 𝜆 .

• Inverting this gives 𝑃 𝜆1 𝑋 < 𝜆 < 𝜆2 𝑋 = 0.95.

• The resulting 95% confidence interval for 𝜆  is given by (𝜆1, 𝜆2) where:

෍

𝒓=𝒙

∞

𝒑 𝒓; 𝝀𝟏 = 𝟎. 𝟎𝟐𝟓 𝐚𝐧𝐝 ෍

𝒓=𝟎

𝑿

𝒑 𝒓; 𝝀𝟐 = 𝟎. 𝟎𝟐𝟓 

𝒐𝒓 𝟏 − 𝑭 𝒙 − 𝟏; 𝝀𝟏 = 𝟎. 𝟎𝟐𝟓 𝒂𝒏𝒅 𝑭 𝒙; 𝝀𝟐 = 𝟎. 𝟎𝟐𝟓



The normal approximation9

• Again, it is easy for a computer to calculate an exact confidence interval for 𝜆 even for a large sample from 

Poisson(𝜆), or a single observation from Poisson(𝜆) where 𝜆 is large.

• However, on a piece of paper a normal approximation can be used either from ∑𝑿𝒊~𝑷𝒐𝒊 𝒏𝝀 → 𝑵 𝒏𝝀. 𝒏𝝀 or 

from the Central Limit Theorem as ഥ𝑿 → 𝑵 𝝀,
𝝀

𝒏
.

•
ത𝑋−𝜆

𝜆/𝑛
 can then be used as a pivotal quantity yielding a confidence interval. However, as in the binomial case, 

the standard confidence interval in practical use comes from 
ത𝑋−𝜆

෡𝜆/𝑛
 where መ𝜆 = ത𝑋.

• This clearly gives ഥ𝑿 ± 𝟏. 𝟗𝟔
ഥ𝑿

𝒏
  as an approximate 95% confidence interval for 𝜆.



Confidence intervals for two-sample problems11
• A comparison of the parameters of two populations can be considered by taking independent random 

samples from each population.

• The importance of the independence is illustrated by noting that:

𝒗𝒂𝒓 ഥ𝑿𝟏 − ഥ𝑿𝟐 =
𝝈𝟏

𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐
• when the samples are independent.

• If the samples are not independent, then a covariance term will be included:

𝒗𝒂𝒓 ഥ𝑿𝟏 − ഥ𝑿𝟐 =
𝝈𝟏

𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐
− 𝟐𝐜𝐨𝐯[ഥ𝐗𝟏, ഥ𝐗𝟐]

• This covariance term can clearly have a substantial effect in the non-independent case.

• The most common form of non-independence is due to paired data.



Confidence intervals for two-sample problems11

Two normal means
• Case 1 (known population variance)

• If ത𝑋1 and ത𝑋2 are the means from independent random samples of size 𝑛1 and 𝑛2 respectively taken from 

normal populations which have known variances 𝜎1
2 and 𝜎2

2 respectively, then the equal-tailed 100(1 − 𝛼)% 

confidence interval for the difference in the population means is given by:

ഥ𝑿𝟏 − ഥ𝑿𝟐 ± 𝒛𝜶/𝟐

𝝈𝟏
𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐

• So for example, when 𝛼 = 5%, we have 𝒛𝜶/𝟐 = 𝒛𝟐.𝟓% = 𝟏. 𝟗𝟔𝟎𝟎.



Confidence intervals for two-sample problems11

Two normal means
• Case 2 (unknown population variance)

• If, ത𝑋1, ത𝑋2, 𝑆1 and  𝑆2 are the means and standard deviations from independent random samples of size 𝑛1 and 

𝑛2 respectively taken from normal populations which have equal variances, then the equal-tailed 100(1 − 𝛼)% 

confidence interval for the difference in the population means is given by:

ഥ𝑿𝟏 − ഥ𝑿𝟐 ± 𝒕𝜶
𝟐,𝒏𝟏+𝒏𝟐−𝟐,

𝑺𝒑

𝟏

𝒏𝟏
+

𝟏

𝒏𝟐
 

• where:

𝑺𝒑
𝟐 =

𝒏𝟏 − 𝟏 𝑺𝟏
𝟐 + 𝒏𝟐 − 𝟏 𝑺𝟐

𝟐

𝒏𝟏 + 𝒏𝟐 − 𝟐

• In any practical situation consideration must be made as to whether 𝑛1 and 𝑛2 are large or small and whether 

𝜎1
2 and 𝜎2

2 are known or unknown. In the case of the t result it should be noted that there is the additional 

assumption of equality of variances.

• Note: The pooled estimator 𝑆𝑝
2 is based on the maximum likelihood estimator but adjusted to give an 

unbiased estimator.



Confidence intervals for two-sample problems11

Two population variances

• For the comparison of two population variances it is more natural to consider the ratio 𝜎1
2/𝜎2

2 than the 

difference 𝜎1
2 − 𝜎2

2. This follows logically from the concept of variance, but also from a technical point of view 

there is a pivotal quantity readily available for the ratio of normal variances but not for their difference.

It is
𝑺𝟏

𝟐/𝑺𝟐_𝟐

𝝈𝟏
𝟐/𝝈𝟐

𝟐 ~𝑭𝒏𝟏−𝟏,𝒏𝟐−𝟏.

• The resulting confidence interval is given by:

𝑺𝟏
𝟐

𝑺𝟐
𝟐 .

𝟏

𝑭𝒏𝟏−𝟏,𝒏𝟐−𝟏
<

𝝈𝟏
𝟐

𝝈𝟐
𝟐 <

𝑺𝟏
𝟐

𝑺𝟐
𝟐 . 𝑭𝒏𝟐−𝟏,𝒏𝟏−𝟏

• It should be said that in practice the estimation of 𝜎1
2/𝜎2

2 is not a common objective.

• However the same F result is used for the more common objective of ‘testing’ whether 𝜎1
2 and 𝜎2

2 may be 

equal, which is relevant for the t result for comparing population means. The acceptability of the hypothesis  

𝐻0: 𝜎1
2 = 𝜎2

2 can be determined simply by confirming that the value 1 is included in the confidence interval 

for 𝜎1
2/𝜎2

2.



Two population proportions12
• The comparison of population proportions corresponds to comparing two binomial probabilities on the basis 

of single observations 𝑋1, 𝑋2 from Bin (𝑛1, 𝜃1) and Bin(𝑛2, 𝜃2) respectively.

• Considering only the case where 𝑛1 and 𝑛2 are large, so that the normal approximation can be used, the 

pivotal quantity used in practice is:
෡𝜽𝟏 − ෡𝜽𝟐 − 𝜽𝟏 − 𝜽𝟐

෡𝜽𝟏 𝟏 − ෡𝜽𝟏

𝒏𝟏
+

෡𝜽𝟐 𝟏 − ෡𝜽𝟐

𝒏𝟐

~𝑵(𝟎, 𝟏)

• where ෡𝜽𝟏, ෡𝜽𝟐 are the MLEs 
𝑿𝟏

𝒏𝟏
,

𝑿𝟐

𝒏𝟐
, respectively.



Two Poisson parameters13
• Considering the comparison of two Poisson parameters (𝜆1 and 𝜆2) when the normal approximation can be 

used:

• ത𝑋𝑖 is an estimator of 𝜆𝑖 such that ത𝑋𝑖 → 𝑁 𝜆𝑖 ,
෡𝜆𝑖

𝑛𝑖

• Therefore ത𝑋1 − ത𝑋2 is an estimator of 𝜆1 − 𝜆2 such that:

ഥ𝑿𝟏 − ഥ𝑿𝟐 → 𝑵 𝝀𝟏 − 𝝀𝟐,
𝝀𝟏

𝒏𝟏
+

𝝀𝟐

𝒏𝟐

• Using መ𝜆𝑖 = ത𝑋𝑖 , an approximate 95% confidence interval for 𝜆1 − 𝜆2 is given by:

ഥ𝑿𝟏 − ഥ𝑿𝟐 ± 𝟏. 𝟗𝟔
ഥ𝑿𝟏

𝒏𝟏
+

ഥ𝑿𝟐

𝒏𝟐

• We are assuming that the two samples are independent.



Paired data14
• Paired data is a common example of comparison using non-independent samples.

• Essentially having paired or matched data means that there is one sample:

𝑋11, 𝑋21 , 𝑋12, 𝑋22 , 𝑋13, 𝑋23 , … , (𝑋1𝑛, 𝑋2𝑛)

• rather than two separate samples:

𝑋11, 𝑋12, 𝑋13 … , 𝑋1𝑛  𝑎𝑛𝑑 (𝑋21, 𝑋22, 𝑋23, … , 𝑋2𝑛)

• The paired situation is really a single sample problem, that is, a problem based on a sample of n pairs of 

observations. (In the independent two-sample situation the sample sizes need not, of course, be equal.)

• Paired data can arise in the form of ‘before and after’ comparisons.



Paired data14
• Investigations using paired data are usually better than two-sample investigations in the sense that the 

estimation is more accurate.

• Paired data are analysed using the differences 𝐷𝑖 = 𝑋1𝑖 − 𝑋2𝑖 and estimation of 𝜇𝐷 = 𝜇1 − 𝜇2 is considered. A 

z result or a t result can be used, but the latter will be more common as it is unlikely that the variances of the 

differences will be known. Assuming normality of the population of such differences (but not necessarily the 

normality of the 𝑋1 and 𝑋2 populations), the pivotal quantity for the t result is:
ഥ𝑫 − 𝝁𝑫

𝑺𝑫/√𝒏
~𝒕𝒏−𝟏

• Note that 𝑆𝐷 is calculated from the values of D.

• The resulting 95% confidence interval for 𝜇𝐷 will be ഥ𝑫 ± 𝒕𝟎.𝟎𝟐𝟓,𝒏−𝟏
𝑺𝑫

𝒏
.



.

Thank You
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