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Introduction1

• In many research areas, such as medicine, education, advertising and insurance, it is necessary to 

carry out statistical tests. These tests enable researchers to use the results of their experiments to 

answer questions such as:

 Is drug A a more effective treatment for AIDS than drug B?

 Does training program T lead to improved staff efficiency?

 Are the severities of large individual private motor insurance claims consistent with a lognormal 

distribution?

• A hypothesis is where we make a statement about something; for example the mean lifetime of 

smokers is less than that of non-smokers. A hypothesis test is where we collect a representative 

sample and examine it to see if our hypothesis holds true.



Hypothesis2
Hypothesis: late 16th century: via late Latin from Greek hupothesis ‘foundation’, from hupo ‘under’ + thesis 

‘placing’.

A statistical hypothesis is a hypothesis that is testable on the basis of observed data modelled as the realised

values taken by a collection of random variables.



Testing of Hypothesis3

The standard approach to carrying out a statistical test involves the following steps:

 specify the hypothesis to be tested

 select a suitable statistical model

 design and carry out an experiment/study

 calculate a test statistic

 calculate the probability value

 determine the conclusion of the test



Testing of Hypothesis3

Null Hypothesis 𝑯𝟎
• The null hypothesis states that a population parameter (such as the mean, the standard deviation, and so on) 

is equal to a hypothesized value. The null hypothesis is often an initial claim that is based on previous 

analyses or specialized knowledge.

• The basic hypothesis being tested is the null hypothesis, denoted 𝐻0 – it can sometimes be regarded as 

representing the current state of knowledge or belief about the value of the parameter being tested (the 

‘status quo’ hypothesis). In many situations a difference between two populations is being tested and the null 

hypothesis is that there is no difference.

Alternate Hypothesis 𝑯𝟏
• The alternative hypothesis states that a population parameter is smaller, greater, or different than the 

hypothesized value in the null hypothesis. The alternative hypothesis is what you might believe to be true or 

hope to prove true.

• In a test, the null hypothesis is contrasted with the alternative hypothesis, denoted 𝐻1.

• The null and alternative hypotheses are two mutually exclusive statements about a population. A hypothesis 

test uses sample data to determine whether to reject the null hypothesis.



Types of Hypotheses4

Hypotheses

Simple 

Hypothesis

one in which all 

parameters of the 

distribution are specified

Composite 

Hypothesis

one in which not all of the 

parameters are specified is called a 

composite hypothesis.



Types of Hypotheses4

Case I
• Normal Distribution: H0: 𝜇 = 175, 𝜎2 < 4

Case II
• Normal Distribution: H0: 𝜇 = 175, 𝜎2 = 9

Case III

• Binomial Distribution : n=12, p=0.5

Case IV

• Binomial Distribution : n =12, p≤ 0.5



Test5

• A test is a rule which divides the sample space (the set of possible values of the data) into two 

subsets, a region in which the data are consistent with 𝐻0 , and its complement, in which the data 

are inconsistent with 𝐻0 . The tests discussed here are designed to answer the question ‘Do the 

data provide sufficient evidence to justify our rejecting 𝐻0 ?’.



One-sided and two-sided tests6

One-Tailed Test

• A one-tailed test is a statistical test in which the 

critical area of a distribution is one-sided so that it 

is either greater than or less than a certain value, 

but not both. 

Two-Tailed Test

• A two-tailed test, in statistics, is a method in which 

the critical area of a distribution is two-sided and 

tests whether a sample is greater than or less than a 

certain range of values..



One-sided and two-sided tests6

• In a test of whether smoking reduces life expectancies, the hypotheses would be:

 𝐻0 : smoking makes no difference to life expectancy

 𝐻1 : smoking reduces life expectancy

• This is an example of a one-sided test, since we are only considering the possibility of a reduction in life 

expectancy ie a change in one direction. However we could have specified the hypotheses:

 𝐻0 : smoking makes no difference to life expectancy

 𝐻1 : smoking affects life expectancy

• This is a two-sided test, since the alternative hypothesis considers the possibility of a change in either direction, 

ie an increase or a decrease.



Example

Which Test would you use?

• Testing a new drug against an existing treatment.

• A certain course claiming 50% higher chances of employment after completion.

• There are two movies that caught your eye, but you're not really sure which one is 

better.



Test Statistics7
A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing.

• A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a 

data-set that reduces the data to one value that can be used to perform the hypothesis test.

• In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behavior 

that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or 

that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

• The actual decision is based on the value of a suitable function of the data, the test statistic. The set of 

possible values of the test statistic itself divides into two subsets, a region in which the value of the test 

statistic is consistent with 𝐻0 , and its complement, the critical region (or rejection region), in which the value 

of the test statistic is inconsistent with 𝐻0. 

• If the test statistic has a value in the critical region, 𝐻0 is rejected. The test statistic (like any statistic) must be 

such that its distribution is completely specified when the value of the parameter itself is specified (and in 

particular ‘under 𝐻0 ’ ie when 𝐻0 is true).



Level of Significance (𝜶)8
The level of significance is defined as the fixed probability of wrong elimination of null hypothesis when in fact, it 

is true.

• The level of significance is the measurement of the statistical significance. It defines whether the null 

hypothesis is assumed to be accepted or rejected.

• It is expected to identify if the result is statistically significant for the null hypothesis to be false or rejected.

• The level of significance is stated to be the probability of type I error and is preset by the researcher with the 

outcomes of error.



Critical Region9
A critical region, also known as the rejection region, is a set of values for the test statistic for which the null 

hypothesis is rejected.

• If the observed test statistic is in the critical region then we reject the null hypothesis and accept the 

alternative hypothesis.



Critical Region9



Questions



Questions



Errors & Power10

• The level of significance of the test, denoted 𝛼 , is the probability of committing a Type I error, ie it is the 

probability of rejecting 𝐻0 when it is in fact true. 

• The probability of committing a Type II error, denoted 𝛽 , is the probability of accepting 𝐻0 when it is false.

• An ideal test would be one which simultaneously minimises 𝛼 and 𝛽 – this ideal however is not attainable in 

practice.

• The power of a test is the probability of rejecting 𝐻0 when it is false, so that the power equals 1 − 𝛽.

• In general, this will be a function of the unknown parameter value. For simple hypotheses the power is a 

single value, but for composite hypotheses it is a function being defined at all points in the alternative 

hypothesis.



Errors & Power10

Question



Best Tests11

• The classical approach to finding a ‘good’ test (called the Neyman-Pearson theory) fixes the value of 𝛼 , ie the 

level of significance required and then tries to find such a test for which the other error probability, 𝛽 , is as 

small as possible for every value of the parameter specified by the alternative hypothesis. This can also be 

described as finding the ‘most powerful’ test.

• The key result in the search for such a test is the Neyman-Pearson lemma, which provides the ‘best’ test 

(smallest 𝛽) in the case of two simple hypotheses. For a given level, the critical region (and in fact the test 

statistic) for the best test is determined by setting an upper bound on the likelihood ratio 𝐿0/𝐿1 , where 

𝐿0 and 𝐿1 are the likelihood functions of the data under 𝐻0 and 𝐻1 respectively.



The Neyman-Pearson lemma12

• Formally, if C is a critical region of size 𝛼 and there exists a constant k such that 
𝐿0

𝐿1
≤ 𝑘 inside C and 

𝐿0

𝐿1
≥

𝑘 outside C, then C is a most powerful critical region of size 𝛼 for testing the simple hypothesis 𝜃 = 𝜃0 against 

the simple alternative hypothesis 𝜃 = 𝜃1.

• So a Neyman-Pearson test rejects 𝐻0 if:

𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎

𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟏
< 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒗𝒂𝒍𝒖𝒆

• Common tests are often such that the null hypothesis is simple, eg 𝐻0: 𝜃 = 𝜃0, against a composite alternative, 

eg 𝐻1: 𝜃 ≠ 𝜃0, which is two-sided, and 𝐻1: 𝜃 > 𝜃0 or  𝐻1: 𝜃 < 𝜃0, which are one-sided.

• Here it is only in certain special cases (usually one-sided cases) that a single test is available which is best (ie

uniformly most powerful) for all parameter values. In cases where a single best test in the sense of the Neyman-

Pearson Lemma is unavailable, another approach is used to derive sensible tests. This approach, which is a 

generalisation of the Lemma, produces tests which are referred to as likelihood ratio tests.



Likelihood ratio tests13

• The critical region (and test statistic) for the test are determined by setting an upper bound on the ratio (max 

𝐿0 /max L ), where max 𝐿0 is the maximum value of the likelihood L under the restrictions imposed by the null 

hypothesis, and max L is the overall maximum value of L for all allowable values of all parameters involved.

• In the most common case when 𝐻0 and 𝐻1 together cover all possible values for the parameters, this 

generalised test rejects 𝐻0 if:

𝐦𝐚𝐱 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎

𝐦𝐚𝐱(𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎 +𝑯𝟏)
< 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒗𝒂𝒍𝒖𝒆



Likelihood ratio tests13

• Important results include the case of sampling from a N(𝜇, 𝜎2) distribution. The method leads to the test 

statistic:
ഥ𝑿 − 𝝁𝟎

𝑺/ 𝒏
~𝒕𝒏−𝟏 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎: 𝝁 = 𝝁𝟎

• for tests on the value of the mean 𝜇 .

• We’re assuming here that 𝜎2 is unknown. If it is known, then the z-test is the ‘best’ test.

• The method also leads to the test statistic::

𝒏 − 𝟏 𝑺𝟐

𝝈𝟎
𝟐

~𝝌𝒏−𝟏
𝟐 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎: 𝝈

𝟐 = 𝝈𝟎
𝟐

• for tests on the value of the variance 𝜎2.



P-values14

• Under the ‘classical’ Neyman-Pearson approach, with a fixed predetermined value of 𝛼 , a test will produce a 

decision as to whether to reject 𝐻0 . But merely comparing the observed test statistic with some critical value 

and concluding eg ‘using a 5% test, reject 𝐻0 ’ or ‘reject 𝐻0 with significance level 5%’ or ‘result significant at 

5%’ (all equivalent statements) does not provide the recipient of the results with clear detailed information on 

the strength of the evidence against 𝐻0 .

• A more informative approach is to calculate and quote the probability value (p-value) of the observed test 

statistic. This is the observed significance level of the test statistic – the probability, assuming 𝐻0 is true, of 

observing a test statistic at least as ‘extreme’ (inconsistent with 𝐻0 ) as the value observed.



P-values14

• The p-value is the lowest level at which 𝐻0 can be rejected.

• The smaller the p-value, the stronger is the evidence against the null hypothesis.

• For example, when testing 𝐻0: 𝜃 = 0.5 vs 𝐻1: 𝜃 = 0.4, where 𝜃 is the probability of a coin coming up heads, and 

82 heads have been observed in 200 tosses, the p-value of the result is: 

𝑷 𝑿 ≤ 𝟖𝟐 𝒘𝒉𝒆𝒓𝒆 𝑿~𝑩𝒊𝒏 𝟐𝟎𝟎, 𝟎. 𝟓

𝑷 𝒁 <
𝟖𝟐. 𝟓 − 𝟏𝟎𝟎

𝟓𝟎
= 𝑷 𝒁 < −𝟐. 𝟒𝟕𝟓 = 𝟎. 𝟎𝟎𝟔𝟕

• 𝐻0 is therefore extremely unlikely – probability < 0.01– and there is very strong evidence against 𝐻0 and in 

favour of 𝐻1. A good way of expressing the result is: ‘we have very strong evidence against the hypothesis that 

the coin is fair (p-value 0.007) and conclude that it is biased against heads’.



P-values14

• Testing does not prove that any hypothesis is true or untrue. Failure to detect a departure from 𝐻0 means that 

there is not enough evidence to justify rejecting 𝐻0 , so 𝐻0 is accepted in this sense only, whilst realising that it 

may not be true. This attitude to the acceptance of 𝐻0 is a feature of the fact that 𝐻0 is usually a precise 

statement, which is almost certainly not exactly true.



Testing the value of a population mean15

• Situation: random sample, size n, from N(𝜇, 𝜎2) – sample mean ത𝑋.

• Testing: 𝐻0: 𝜇 = 𝜇0

𝒂 𝝈 𝒌𝒏𝒐𝒘𝒏 ∶ 𝒕𝒆𝒔𝒕 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄 𝒊𝒔 ഥ𝑿, 𝒂𝒏𝒅
ഥ𝑿 − 𝝁𝟎

𝝈/ 𝒏
~𝑵 𝟎, 𝟏 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎

𝒃 𝝈 𝒖𝒏𝒌𝒏𝒐𝒘𝒏 ∶ 𝒕𝒆𝒔𝒕 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄 𝒊𝒔
ഥ𝑿 − 𝝁𝟎

𝑺/ 𝒏
~𝒕𝒏−𝟏 𝒖𝒏𝒅𝒆𝒓 𝑯𝟎

• For large samples, N(0,1) can be used in place of 𝑡𝑛−1 . Further, the Central Limit Theorem justifies the use of a 

normal approximation for the distribution of ത𝑋 in sampling from any reasonable population, and 𝑠2 is a good 

estimate of 𝜎2 , so the requirement that we are sampling from a normal distribution is not necessary in either 

case (a) or (b) when we have a large sample.



Testing the value of a population variance16

• Situation: random sample, size n, from N(𝜇, 𝜎2) – sample variance 𝑆2.

• Testing: 𝐻0: 𝜎
2 = 𝜎0

2

• Test statistic is 
𝒏−𝟏 𝑺𝟐

𝝈𝟎
𝟐 ~𝝌𝒏−𝟏

𝟐 𝑢𝑛𝑑𝑒𝑟 𝐻0

• For large samples, the test works well even if the population is not normally distributed.



Testing the value of a population proportion17

• Situation: n binomial trials with P(success) = p ; we observe x successes.

• Testing: 𝐻0 ∶ 𝑝 = 𝑝0 .

• Test statistic is X ~ Bin(n,𝑝0 )under 𝐻0 .

• For large n, use the normal approximation to the binomial (with continuity correction), ie use:

𝑿±
𝟏
𝟐

𝒏
− 𝒑

𝒑 𝟏 − 𝒑
𝒏

~𝑵(𝟎, 𝟏)

• or:

𝑿 ±
𝟏
𝟐
− 𝒏𝒑

𝒏𝒑 𝟏 − 𝒑
~𝑵(𝟎, 𝟏)



Testing the value of the mean of a Poisson distribution18

• Situation: random sample, size n, from Poi (𝜆) distribution.

• Testing: 𝐻0: 𝜆 = 𝜆0

• Test statistic is sample sum ∑𝑋𝑖~𝑃𝑜𝑖(𝑛𝜆0) under 𝐻0 . In the case where n is small and n𝜆0 is of moderate size, 

probabilities can be evaluated directly (or found from tables, if available).

• For large samples (or indeed whenever the Poisson mean is large) a normal approximation can be used for the 

distribution of the sample sum or sample mean. Recall that

• ∑𝑋𝑖~𝑃𝑜𝑖 𝑛𝜆 → 𝑁(𝑛𝜆, 𝑛𝜆).

• Test statistic is ത𝑋, and 
ഥ𝑿−𝝀𝟎

𝝀𝟎/𝒏
~𝑵(𝟎, 𝟏) under 𝐻0.

• or we can use ∑𝑋𝑖 , and 
∑𝑿𝒊−𝒏𝝀𝟎

𝒏𝝀𝟎
~𝑵 𝟎, 𝟏 𝑢𝑛𝑑𝑒𝑟 𝐻0.

• Using the second version it is easier to incorporate a continuity correction. The first version has continuity 

correction 0.5/n , whereas the second version has continuity correction 0.5.



Goodness of fit test19



Goodness of fit test19



Goodness of fit test19



Contingency tables20
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