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1 Introduction

* In many research areas, such as medicine, education, advertising and insurance, it is necessary to
carry out statistical tests. These tests enable researchers to use the results of their experiments to
answer questions such as:

> Is drug A a more effective treatment for AIDS than drug B?

» Does training program T lead to improved staff efficiency?

> Are the severities of large individual private motor insurance claims consistent with a lognormal
distribution?

* A hypothesis is where we make a statement about something; for example the mean lifetime of
smokers is less than that of non-smokers. A hypothesis test is where we collect a representative
sample and examine it to see if our hypothesis holds true.



Hypothesis

Hypothesis: late 16th century: via late Latin from Greek hupothesis ‘foundation’, from hupo ‘under’ + thesis
‘placing’.

A statistical hypothesis is a hypothesis that is testable on the basis of observed data modelled as therealised
values taken by a collection of random variables.



3 Testing of Hypothesis

The standard approach to carrying out a statistical test involves the following steps:

> specify the hypothesis to be tested

> select a suitable statistical model

» design and carry out an experiment/study
> calculate a test statistic

> calculate the probability value

> determine the conclusion of the test



3 Testing of Hypothesis

NuII Hypothesis H
The null hypothesis states that a population parameter (such as the mean, the standard deviation, and so on)
is equal to a hypothesized value. The null hypothesis is often an initial claim that is based on previous
analyses or specialized knowledge.

» The basic hypothesis being tested is the null hypothesis, denoted H, — it can sometimes be regarded as
representing the current state of knowledge or belief about the value of the parameter being tested (the
'status quo’ hypothesis). In many situations a difference between two populations is being tested and the null
hypothesis is that there is no difference.

Alternate Hypothesis H,
The alternative hypothesis states that a population parameter is smaller, greater, or different than the
hypothesized value in the null hypothesis. The alternative hypothesis is what you might believe to be true or
hope to prove true.

* In a test, the null hypothesis is contrasted with the alternative hypothesis, denoted H;.

« The null and alternative hypotheses are two mutually exclusive statements about a population. A hypothesis
test uses sample data to determine whether to reject the null hypothesis.
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4 Types of Hypotheses
0
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Composite

Simple
Hypothesis

Hypothesis

parameters of the parameters are specified is called a

one in which all one in which not all of the
distribution are specified composite hypothesis.




Types of Hypotheses

Case |
Normal Distribution: Hy: u = 175,02 < 4

Case |l
Normal Distribution: Hy: u = 175,62 =9

Case Il
Binomial Distribution : n=12, p=0.5

Case IV
Binomial Distribution: n =12, p< 0.5



5 Test

» A testis arule which divides the sample space (the set of possible values of the data) into two
subsets, a region in which the data are consistent with H, , and its complement, in which the data
are inconsistent with H, . The tests discussed here are designed to answer the question ‘Do the
data provide sufficient evidence to justify our rejecting Hy ?".



6 One-sided and two-sided tests

One-Tailed Test Two-Tailed Test
A one-tailed test is a statistical test in which the * A two-tailed test, in statistics, is a method in which
critical area of a distribution is one-sided so that it the critical area of a distribution is two-sided and
is either greater than or less than a certain value, tests whether a sample is greater than or less than a
but not both. certain range of values..

P=0.05

One-tailed Test Vs Two-tailed Test




6 One-sided and two-sided tests

» In a test of whether smoking reduces life expectancies, the hypotheses would be:
» H, : smoking makes no difference to life expectancy
» H; : smoking reduces life expectancy

« This is an example of a one-sided test, since we are only considering the possibility of a reduction in life
expectancy ie a change in one direction. However we could have specified the hypotheses:

» H, : smoking makes no difference to life expectancy
» H; : smoking affects life expectancy

« This is a two-sided test, since the alternative hypothesis considers the possibility of a change in either direction,
le an increase or a decrease.
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Example

Which Test would you use?

» Testing a new drug against an existing treatment.
A certain course claiming 50% higher chances of employment after completion.

« There are two movies that caught your eye, but you're not really sure which one is
better.



Test Statistics

A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing.

A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a
data-set that reduces the data to one value that can be used to perform the hypothesis test.

In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behavior
that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or
that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

The actual decision is based on the value of a suitable function of the data, the test statistic. The set of
possible values of the test statistic itself divides into two subsets, a region in which the value of the test
statistic is consistent with H,, , and its complement, the critical region (or rejection region), in which the value
of the test statistic is inconsistent with H,,.

If the test statistic has a value in the critical region, H, is rejected. The test statistic (like any statistic) must be
such that its distribution is completely specified when the value of the parameter itself is specified (and in
particular ‘'under H, ' ie when H, is true).



8 Level of Significance (a)

The level of significance is defined as the fixed probability of wrong elimination of null hypothesis when in fact, it
Is true.

The level of significance is the measurement of the statistical significance. It defines whether the null
hypothesis is assumed to be accepted or rejected.

It is expected to identify if the result is statistically significant for the null hypothesis to be false or rejected.

The level of significance is stated to be the probability of type | error and is preset by the researcher with the
outcomes of error.



O Ciritical Region

A critical region, also known as the rejection region, is a set of values for the test statistic for which the null
hypothesis is rejected.

» If the observed test statistic is in the critical region then we reject the null hypothesis and accept the
alternative hypothesis.
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O Ciritical Region

84
Rejection Rejection
region region
Z; 0 g < . 0 z
Find z, for a left-tail Find z, for a right-tail
test with o= .01. testwith o= .05.
Rejection Rejection Z,= 1.645
7 =598 region region
0 ~z,=-2.575
Ze 0 7 and z, = 2.575

Find =z, and z,for a two-tail test with =@ L.



Questions

The average 1Q of a sample of 50 university students was found to be 105. Carry out a statistical
test to determine whether the average 1Q of university students is greater than 100, assuming
that 1Qs are normally distributed. It is known from previous studies that the standard deviation of
Qs among students is approximately 20.



Questions

The annual rainfall in centimetres at a certain weather station over the last ten years has been as
follows:

17.2 28.1 25.3 26.2 30.7 19.2 23.4 27.5 295 31.6

Assuming this data is taken from a normal distribution test at the 5% level whether the standard
deviation of the annual rainfall at the weather station is equal to 4 cm.
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Errors & Power

» The level of significance of the test, denoted «a , is the probability of committing a Type | error, ie it is the
probability of rejecting Hy, when it is in fact true.

» The probability of committing a Type |l error, denoted g , is the probability of accepting H, when it is false.

* Anideal test would be one which simultaneously minimises a and 8 — this ideal however is not attainable in
practice.

« The power of a test is the probability of rejecting H, when it is false, so that the power equals 1 — .
» In general, this will be a function of the unknown parameter value. For simple hypotheses the power is a

single value, but for composite hypotheses it is a function being defined at all points in the alternative
hypothesis.



10 Errors & Power

Question

A random variable X is believed to follow an Exp(A) distribution. In order to test the null
hypothesis ©#=20 against the alternative hypothesis #=30, where z=1/1, a single value is

observed from the distribution. If this value is less than 28, H, is accepted, otherwise H is
rejected. Calculate the probabilities of:

(i) a Type |l error

(ii) a Type Il error.



11 Best Tests

The classical approach to finding a ‘good’ test (called the Neyman-Pearson theory) fixes the value of a , ie the
level of significance required and then tries to find such a test for which the other error probability, £, is as
small as possible for every value of the parameter specified by the alternative hypothesis. This can also be
described as finding the ‘'most powerful’ test.

The key result in the search for such a test is the Neyman-Pearson lemma, which provides the ‘best’ test
(smallest B) in the case of two simple hypotheses. For a given level, the critical region (and in fact the test
statistic) for the best test is determined by setting an upper bound on the likelihood ratio L,/L; , where
Ly and L, are the likelihood functions of the data under H, and H; respectively.
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The Neyman-Pearson lemma

Formally, if C is a critical region of size a and there exists a constant k such that o < k inside C and L° >
1

k outside C, then C is a most powerful critical region of size a for testing the S|mple hypothesis 8 = 6, against
the simple alternative hypothesis 68 = 6,.

So a Neyman-Pearson test rejects H, if:

Likelihood under H

< critical val
Likelihood under H4 criticatvatue

Common tests are often such that the null hypothesis is simple, eg Hy: 8 = 6, against a composite alternative,
eg H;: 6 # 6, which is two-sided, and H,: 6 > 6, or H;:8 < 6,, which are one-sided.

Here it is only in certain special cases (usually one-sided cases) that a single test is available which is best (ie
uniformly most powerful) for all parameter values. In cases where a single best test in the sense of the Neyman-
Pearson Lemma is unavailable, another approach is used to derive sensible tests. This approach, which is a
generalisation of the Lemma, produces tests which are referred to as likelihood ratio tests.



13 Likelihood ratio tests

The critical region (and test statistic) for the test are determined by setting an upper bound on the ratio (max
Ly, /max L), where max L, is the maximum value of the likelihood L under the restrictions imposed by the null
hypothesis, and max L is the overall maximum value of L for all allowable values of all parameters involved.

In the most common case when H, and H; together cover all possible values for the parameters, this
generalised test rejects H,, if:

max(Likelihood under H,)
max(Likelihood under Hy + H,)

< critical value
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Likelihood ratio tests

 Important results include the case of sampling from a N(u, a2) distribution. The method leads to the test
statistic:

X — o
S/\n

» for tests on the value of the mean p .

~t,_1 under Hy: u = Uy

«  We're assuming here that 2 is unknown. If it is known, then the z-test is the ‘best’ test.
* The method also leads to the test statistic:

(- 1)s?)
— ~x%_, under Hy: 0% = o5
0

« for tests on the value of the variance o2.



14 P-values

» Under the ‘classical’ Neyman-Pearson approach, with a fixed predetermined value of a , a test will produce a
decision as to whether to reject H, . But merely comparing the observed test statistic with some critical value
and concluding eg ‘using a 5% test, reject H,, ' or 'reject H, with significance level 5%’ or result significant at
5%' (all equivalent statements) does not provide the recipient of the results with clear detailed information on
the strength of the evidence against H,, .

* A more informative approach is to calculate and quote the probability value (p-value) of the observed test
statistic. This is the observed significance level of the test statistic — the probability, assuming Hj, is true, of
observing a test statistic at least as ‘extreme’ (inconsistent with H, ) as the value observed.



14

P-values

* The p-value is the lowest level at which H, can be rejected.
« The smaller the p-value, the stronger is the evidence against the null hypothesis.

» For example, when testing Hy: 6 = 0.5 vs H;: 8 = 0.4, where 8 is the probability of a coin coming up heads, and
82 heads have been observed in 200 tosses, the p-value of the result is:

P(X < 82) where X~Bin(200,0.5)

V50

* H, is therefore extremely unlikely — probability < 0.01- and there is very strong evidence against H, and in
favour of H;. A good way of expressing the result is: ‘we have very strong evidence against the hypothesis that
the coin is fair (p-value 0.007) and conclude that it is biased against heads.

82.5-100
P\Z< = P(Z < —-2.475) = 0.0067



14 P-values

Testing does not prove that any hypothesis is true or untrue. Failure to detect a departure from H, means that
there is not enough evidence to justify rejecting Hy , so H, is accepted in this sense only, whilst realising that it
may not be true. This attitude to the acceptance of H,, is a feature of the fact that H, is usually a precise
statement, which is almost certainly not exactly true.



15 Testing the value of a population mean

» Situation: random sample, size n, from N(u, 02) — sample mean X.

® TEStingI HO:‘U = Uy

_ X —
(a) o known : test statistic is X, andwva (0,1) under H,

o/\n

X —
M~tn_1 under H,
S/Vn

» For large samples, N(0,1) can be used in place of t,,_; . Further, the Central Limit Theorem justifies the use of a
normal approximation for the distribution of X in sampling from any reasonable population, and s? is a good
estimate of o2 , so the requirement that we are sampling from a normal distribution is not necessary in either

case (a) or (b) when we have a large sample.

(b) o0 unknown : test statistic is



16 Testing the value of a population variance

 Situation: random sample, size n, from N(u, 02) — sample variance S2.
» Testing: Hy: 0% = of

_ 2
. Test statistic is 012)5 ~x%:_, under H,
0

For large samples, the test works well even if the population is not normally distributed.



17 Testing the value of a population proportion

 Situation: n binomial trials with P(success) = p ; we observe x successes.
 Testing:H,: p= p,.
» Test statistic is X ~ Bin(n,p, Junder H, .

For large n, use the normal approximation to the binomial (with continuity correction), ie use:

)

L ~N(0,1)
p(1—p)
n
or:
X+ % —np
~N(0,1)

Jnp(1 - p)
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Testing the value of the mean of a Poisson distribution

 Situation: random sample, size n, from Poi (1) distribution.
b TEStingI HO:A = AO

» Test statistic is sample sum Y X;~Poi(nl,) under H, . In the case where n is small and n2, is of moderate size,
probabilities can be evaluated directly (or found from tables, if available).

» For large samples (or indeed whenever the Poisson mean is large) a normal approximation can be used for the
distribution of the sample sum or sample mean. Recall that
* YX;~Poi(ni) » N(ni, nAi).

X-1
\/T/‘; ~N(0, 1) under H,.

« Test statisticis X, and

. . ZXi—nl() _
or we can use YX;, and o N(0,1) under H,.

» Using the second version it is easier to incorporate a continuity correction. The first version has continuity
correction 0.5/n, whereas the second version has continuity correction 0.5.



19 Goodness of fit test

Goodness of fit

This is investigating whether it is reasonable to regard a random sample as coming from a
specified distribution, ie whether a particular model provides a ‘good fit’ to the data.

Z(f;—e,-)z

€;

where f; and e; are the observed and expected frequencies respectively in the jth
category/cell, and the summation is taken over all categories/cells involved. This statistic

has, approximately, a chi-square ( ,152) distribution under the hypothesis on the basis of
which the expected frequencies were calculated.



19 Goodness of fit test

In testing whether a die is fair, a suitable model is:

P(X =i)= %, i=12,3,4,5,6 where Xis the number thrown

and the hypotheses may be:
H, : Number thrown has the distribution specified in the model

H;: Number thrown does not have the distribution specified in the model

If the die is thrown 300 times, with the following results,
X. 1 2 3 4 5 6

f;: 43 56 54 47 41 59

Carryout a 12 test to determine whether the data comes from a fair die.



19 Goodness of fit test

The numbers of claims made last year by individual motor insurance policyholders were:

Number of claims 0 1 2 3 4+
Number of policyholders 2,962 382 47 25 4

Carry out a chi-square test to determine whether these frequencies can be considered to conform
to a Poisson distribution.



20 Contingency tables
Contingency tables

A contingency table is a two-way table of counts obtained when sample items (people,
companies, policies, claims etc) are classified according to two category variables. The
question of interest is whether the two classification criteria are independent.

H,: the two classification criteria are independent.

The simple rule for calculating the expected frequency for any cell is then:

row total x column total
table total

The degrees of freedom associated with a table with r rows and ¢ columns is:

(re-1)—-(r-1)—(c-1)=(r-1)(c-1)

since the column totals and row totals reduce the number of degrees of freedom.



20 Contingency tables

For each of three insurance companies, A, B, and C, a random sample of non-life policies of
a particular kind is examined. It turns out that a claim (or claims) have arisen in the past
year in 23% of the sampled policies for A, in 28% of those for B, and in 20% of those for C.

Test for differences in the underlying proportions of policies of this kind which have given
rise to claims in the past year among the three companies in the two situations:

(a) the sample sizes were 100, 100, and 200 respectively
(b) the sample sizes were 300, 300, and 600 respectively.

Comment briefly on your results.



