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Introduction1

In this chapter we will investigate the problem of deciding whether the observed differences 

between more than two sample means are purely random or whether there are actually real 

differences between the sample means. 

The technique of analysis of variance consists of separating the total variability in a set of 

experimental results into components associated with the different sources of that variability. 

These components are then compared, and this enables us to test the null hypothesis that no 

differences exist between the (population) treatment means.



One way analysis of Variance2

The model 

A one-way analysis of variance is used to compare k treatments when the experiment provides 𝑛𝑖
responses for treatment i, i = 1 2 ,,,  k . The data available are then n = σ𝑖 𝑛𝑖 and we have responses 

𝑦𝑖𝑗 , where 𝑦𝑖𝑗 is the j th observation using treatment i. 



One way analysis of Variance2

Example

Consider a company providing health insurance. The claim amounts over the last month for 

four types of policies are given in the table below: (in 000’s)

Policy A Policy B Policy C Policy D



One way analysis of Variance2

Example (continued)

• There are four “treatments” (ie four different samples that we wish to compare), so k = 4 .

• The first “treatment” (Policy A) has 5 results (called responses), so n1 = 5 . Similarly, the 

second treatment (Policy B) has 8 results, so n2 = 8 . Finally, n3 = 4 and n4 = 3. 

• The total number of responses is simply the sum of the treatment totals and is given by n = 
σ𝑖 𝑛𝑖 = 5+8+4+3 = 20

• We use 𝑦𝑖𝑗 to stand for the jth result in the ith treatment. For example, 𝑦21 stands for the 2nd 

treatment 1st result which is 65.



One way analysis of Variance2

We’ll call the treatment means 𝜇1 , 𝜇2 , 𝜇3 and 𝜇4. Now when we carried out our two-sample t-

test we assumed that each of the samples came from a normal distribution with the same 

variance. We shall make the same assumption here. We shall call the common variance 𝜎2. 

Therefore, the Policy A results, 𝑦1𝑗 , come from 𝑌1𝑗 ~ N(𝜇1 , 𝜎2). In general results, 𝑦𝑖𝑗 , come from 

𝑌𝑖𝑗 ~ N(𝜇𝑖 , 𝜎2).

Now the aim of ANOVA is to compare the means – is there any significant difference 

between them? Or is it just random variation?

However, instead of comparing the treatment means of 78, 68, 85 and 98 we are going to work 

with the “treatment effect”. Basically, the treatment effect (denoted by 𝜏𝑖 ) is simply how different 

the treatment mean is from the overall mean.



One way analysis of Variance2

Example (continued)

In our case of health insurance company,

𝜇1 = 78

Overall mean = µ = (85 + 76 + 90 + …. + 124 + 80 + 90)/20 = 78.4

So, the treatment effect is as follows:

𝜏1 = 78 – 78.4 = -0.4

Rearranging the formula, we can see that we have essentially split up the treatment means into 

two parts – the overall mean and the treatment effect, i.e. 𝝁𝒊 = µ + 𝝉𝒊



One way analysis of Variance2

In general, the result 𝑦𝑖𝑗 , comes from 𝑌𝑖𝑗 ~ N(𝜇𝑖 , 𝜎2) which can now be written as 𝑌𝑖𝑗 ~ 

N(µ + 𝜏𝑖 , 𝜎2)

Splitting this up we get 𝑌𝑖𝑗 ~ µ + 𝜏𝑖 + N(0, 𝜎2) or 𝑌𝑖𝑗 = µ + 𝜏𝑖 + 𝑒𝑖𝑗 , where 𝑒𝑖𝑗 ~ N(0, 𝜎2). 

All we are saying is that any result is the treatment mean plus some random variation.



One way analysis of Variance2

The mathematical model is:

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝑒𝑖𝑗 , 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … , 𝑛𝑖
where the errors 𝑒𝑖𝑗 are independent 𝑁 0, 𝜎2 random variables. 

Under this model the error variance does not depend on the treatment concerned, the 𝑌𝑖𝑗 's are 

independent, and 𝑌𝑖𝑗 is distributed 𝑁 𝜇 + 𝜏𝑖 , 𝜎
2 .

𝜇 =
1

𝑛
σ𝑖σ𝑗𝐸 𝑌𝑖𝑗 is the "overall" population mean.

𝜏𝑖 is the deviation of the 𝑖 th treatment mean from 𝜇, ie the 𝑖 th treatment effect, and σ𝑖𝑛𝑖𝜏𝑖 = 0.



One way analysis of Variance2

Assumptions

There are three assumptions underlying analysis of variance, namely: 

(1) The populations must be normal. 

(2) The populations have a common variance. 

(3) The observations are independent



Estimating the Parameters3

Before we estimate the 𝜇 and 𝜏𝑖 's in our model we need to familiarise ourselves with 

the "dot notation" shorthand. 

Where a subscript is replaced by a dot, this just means that we sum over all the values 

of that subscript. So, for example, 𝑌𝑖., means σ𝑗=1
𝑛 𝑌𝑖𝑗. 

If the symbol includes a bar, the dot represents averaging over all values of the replaced 

subscript. So, for example, ᪄𝑌𝑖·, means 
1

𝑛𝑖
σ𝑗=1
𝑛 𝑌𝑖𝑗 .



Estimating the Parameters3

The parameters 𝜇 and 𝜏𝑖 , 𝑖 = 1,2, … , 𝑘 can be estimated using least squares by finding values for 

𝜇, 𝜏1, 𝑖 = 1,2, … , 𝑘 such that:

𝑞 =෍

𝑖

෍

𝑗

e𝑖𝑗
2 =෍

𝑖

෍

𝑗

𝑌𝑖𝑗 − 𝜇 − 𝜏𝑖
2

is minimized.

Differentiating this partially with respect to 𝜇 and 𝜏𝑖 , 𝑖 = 1,2, … , 𝑘, equating to zero and solving 

gives the normal equations:

ƶ𝜇 = ᪄𝑌.. where ᪄𝑌.. =
1

𝑛
σ𝑖σ𝑗𝑌𝑖𝑗 the overall mean of the observed responses, and:

ƶ𝜏𝑖 = ᪄𝑌𝑖. − ᪄𝑌.. where ᪄𝑌𝑖. =
1

𝑛𝑖
σ𝑗𝑌𝑖𝑗 the mean of the 𝑖 th treatment responses.



Estimating the Parameters3

Since σ𝑖𝑛𝑖𝜏𝑖 = 0 the number of independent parameters specifying the treatment means is 𝑘, not 

𝑘 + 1. The weighted sum of the estimated effects is zero, ie σ𝑖𝑛𝑖 ƶ𝜏𝑖 = 0

We are now going to estimate the common variance 𝝈𝟐 .

The 𝑖 th treatment responses provide: 

𝑠𝑖
2 =

1

𝑛𝑖−1
σ𝑗 𝑌𝑖𝑗 − ᪄𝑌𝑖⋅

2
as an unbiased estimator of 𝜎2

and: 

1

𝜎2
σ𝑗 𝑌𝑖𝑗 − ᪄𝑌𝑖⋅

2
is 𝜒2 with 𝑛𝑖 − 1 degrees of freedom.



Estimating the Parameters3

Combining the information from within each treatment gives:

𝐸 ෍

𝑖

𝑛𝑖 − 1 𝑠𝑖
2 = ෍

𝑖

𝑛𝑖 − 1 𝜎2 = (𝑛 − 𝑘)𝜎2

and so:

ƶ𝜎2 =
1

𝑛 − 𝑘
෍

𝑖

𝑛𝑖 − 1 𝑆𝑖
2 =

1

𝑛 − 𝑘
෍

𝑖

෍

𝑗

𝑌𝑖𝑗 − ᪄𝑌𝑖.
2

provides a pooled unbiased estimator of 𝜎2 and 
1

𝜎2
σ𝑖σ𝑗 𝑌𝑖𝑗 − ᪄𝑌𝑖.

2
is 𝜒2 with (𝑛 − 𝑘) degrees of 

freedom. This is the estimator we will always use for the common underlying variance of each of 

the treatments. 



Hypothesis 4

First, we need to state our hypotheses: 

The null hypothesis is that the treatment means are equal, i.e., the treatment effects are zero, so:

𝐻0: 𝑟𝑖 = 0, 𝑖 = 1,2, … , 𝑘

൫𝐻1 is the general alternative : 𝜏𝑖 ≠ 0 for at least one )𝑖 .

We now have estimates for all the unknowns in our model and are ready to look at how we carry 

out our one-way analysis of variance. 



Partitioning the Variability5

The total variability can be partitioned into two components, one measuring the inherent 

variability within the treatments and the other measuring the variability between the treatment 

means ᪄𝑦1∗, ᪄𝑦2∗, … , ᪄𝑦𝑘∗. 

The result is:

෍

𝑖

෍

𝑗

𝑌𝑖𝑗 − ᪄𝑌∗∗
2
=෍

𝑖

෍

𝑗

𝑌𝑖𝑗 − ᪄𝑌𝑖⋅
2
+෍

𝑖

𝑛𝑖 ᪄𝑌𝑖⋅ − ᪄𝑌∗∗
2

say 𝑺𝑺𝑻 = 𝑺𝑺𝑹 + 𝑺𝑺𝑩

The whole point of partitioning the variability is to see how much of the overall variance is 

made of this expected “within treatment” variance, 𝑆𝑆𝑅, and how much is made up of variance 

between the means, 𝑆𝑆𝐵. The larger the ‘between-means’ variance is, the less likely it is that we 

can assume that they all have the same mean.



Calculations6

We shall rewrite them in the same way that we rewrote the sample variance in Chapter 1:

𝑆2 =
1

𝑛 − 1
෍

𝑖

𝑥𝑖 − ᪄𝑥 2 =
1

𝑛 − 1
෍

𝑖

𝑥𝑖
2 −

σ 𝑥𝑖
2

𝑛
=

1

𝑛 − 1
෍

𝑖

𝑥𝑖
2 − 𝑛 ᪄𝑥2

So, we have:

𝑆𝑆𝑇 =෍

𝑖

෍

𝑗

𝑦𝑖𝑗 − ᪄𝑦..
2
=෍

𝑖

෍

𝑗

𝑦𝑖𝑗
2 −

σ σ. 𝑦𝑖𝑗
2

𝑛
=෍

𝑖

෍

𝑗

𝑦𝑖𝑗
2 −

𝑦..
2

𝑛

𝑆𝑆𝐵 =෍

𝑖

𝑛𝑖 ᪄𝑦𝑖. − ᪄𝑦..
2 =෍

𝑖

𝑦𝑖.
2

𝑛𝑖
−

σ σ. 𝑦𝑖𝑗
2

𝑛
=෍

𝑖

𝑦𝑖.
2

𝑛𝑖
−
𝑦..
2

𝑛

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − 𝑆𝑆𝐵



Inferences7

• 𝑺𝑺𝑹 is the within-treatments or residual sum of squares - it is just the sum of squares of 

the residuals from the fit (the estimated errors ƶ𝑒𝑖𝑗 = 𝑌𝑖𝑗 − ᪄𝑌𝑖. ) and is based on (𝑛 − 1) − (𝑘 −

1) = 𝑛 − 𝑘 degrees of freedom, the degrees of freedom remaining after estimating the 

parameters for the means. ƶ𝝈𝟐 = 𝑺𝑺𝑹/(𝒏 − 𝒌) is an unbiased estimator of 𝝈𝟐 and 𝑆𝑆𝑅/𝜎
2 is 

𝜒𝑛−𝑘
2 .

• 𝑆𝑆𝐵 is the between-treatments sum of squares.

• When 𝐻0 is true, 𝑆𝑆𝑇/(𝑛 − 1) is the overall sample variance and so 𝑆𝑆𝑇/𝜎
2 is 𝜒𝑛−1

2 .

• Since 𝑆𝑆𝑅 and 𝑆𝑆𝐵 are in fact independent and 𝑆𝑆𝑅/𝜎
2 is 𝜒𝑛−𝑘

2 it follows that 𝑆𝑆𝐵/𝜎
2 is 

𝜒𝑘−1
2 . 𝑺𝑺𝑩/(𝒌 − 𝟏) is another unbiased estimator of 𝝈𝟐.



Inferences7

Finally:

𝑆𝑆𝐵/(𝑘 − 1)

𝑆𝑆𝑅/(𝑛 − 𝑘)
=

between treatments mean square

residual mean square

is 𝐹𝑘−1,𝑛−𝑘 and 𝐻0 is rejected for "large" values of this ratio.

The results are usually set out in an ANOVA table: 



Question

CT3 September 2015 Q6

Consider a survey of alcohol consumption in three different locations in the UK. In each of the 

three locations 50 men are asked about the units of alcohol they consumed during the week 

preceding the survey. The results are summarised in the following table:

Perform a one-way analysis of variance test to test the hypothesis that the location has no impact 

on alcohol consumption. [6] 



Solution



Confidence Intervals for a single treatment mean 8.1

In the situation where interest is focused on a particular treatment, say treatment 𝑖, 𝜎2 can be 

estimated using the residual mean square ƶ𝜎2 and a confidence interval for 𝜇 + 𝜏𝑖 (ie for 

treatment mean 𝜇𝑖 ) is given by:

᪄𝒚𝒊. ± 𝒕 ƶ𝝈/ 𝒏𝒊

where 𝑡 is based on (𝑛 − 𝑘) degrees of freedom and ƶ𝜎2 = 𝑆𝑆𝑅/(𝑛 − 𝑘). 



Confidence Intervals for a pair of treatment means 8.2

In the situation where interest is focused on a particular pair of treatments, say treatments 1 and 

2 for convenience, then:

var ᪄𝑌1. − ᪄𝑌2. = 𝜎2
1

𝑛1
+

1

𝑛2

and a confidence interval for 𝜇1 − 𝜇2 = 𝜇 + 𝜏1 − 𝜇 + 𝜏2 = 𝜏1 − 𝜏2 is given by:

᪄𝒚𝟏. − ᪄𝒚𝟐. ± 𝒕 ƶ𝝈
𝟏

𝒏𝟏
+

𝟏

𝒏𝟐

𝟏/𝟐

where 𝑡 is again based on (𝑛 − 𝑘) degrees of freedom.



Question

CT3 September 2018 Q9
For an investigation into drinking habits a random sample of men aged 16–90 is obtained. The 

following data are reported for men belonging to different age groups:

(i) Calculate a 95% confidence interval for the expected value of the average units of alcohol per 

week consumed by men aged 16–24 based on the sample above. [2] 

(ii) Calculate the overall average units of alcohol per week consumed by men aged 16–90 in the 

sample above. [3]



Question

(iii) Test the hypothesis, using an analysis of variance, that the mean number of units of alcohol 

per week is the same for all age groups. [8] 

(iv) Calculate a 95% confidence interval for the expected units of alcohol per week consumed by 

all men aged 16–90 based on the sample above. [2] 

(v) Comment on your results in parts (iii) and (iv) whether the result in part (iv) should be used to 

draw inference about the drinking habits of an individual. [2] 

[Total 17]



Solution



Solution



Solution



Analyzing treatment means using a least 
significant difference approach 

9

Constructing such intervals for all possible pairs of treatments is not recommended – the 

interpretation of them becomes difficult as the overall level of confidence of the whole set of 

intervals has to be considered. 

However, if 𝐻0: 𝜏𝑖 = 0, 𝑖 = 1,2, … , 𝑘 has been rejected, a good idea as to whether the treatments 

fall into several reasonably homogeneous groups can be obtained as follows.

Step 1

List the observed treatments in order, eg. with 𝑘 = 4 we might have:

᪄𝑦2. < ᪄𝑦3. < ᪄𝑦1. < ᪄𝑦4.



Analyzing treatment means using a least 
significant difference approach 

9

Step 2

We will now examine each of the pairs in order to see whether the means are the same or not. 

We do this by using a two-sample test. For example, on the first pair:

𝐻0: 𝜇2 = 𝜇3
𝐻1: 𝜇2 ≠ 𝜇3

Our statistic is:

᪄𝑌3⋅ − ᪄𝑌2⋅ − 𝜇3 − 𝜇2

ƶ𝜎
1
𝑛3

+
1
𝑛2

∼ 𝑡𝑛−𝑘



Analyzing treatment means using a least 
significant difference approach 

9

Now, under 𝐻0, 𝜇3 − 𝜇2 = 0. Since ᪄𝑦3 > ᪄𝑦2. there will be a significant difference between the means if 
the statistic is greater than the upper 2.5% critical value of the appropriate 𝑡 distribution:

᪄𝑦3. − ᪄𝑦2. − 𝜇3 − 𝜇2

ƶ𝜎
1
𝑛3

+
1
𝑛2

> 𝑡0.025,𝑛−𝑘

Rearranging:

᪄𝑦3. − ᪄𝑦2⋅ > 𝑡0.025,𝑛−𝑘 × ƶ𝜎
1

𝑛3
+

1

𝑛2

The value on the right-hand side is the “least significant difference”, i.e. the value that the difference 

between the sample means needs to exceed to say that there is a significant difference. 



Analyzing treatment means using a least 
significant difference approach 

9

For a given level of significance, say 5%, calculate the least difference between ᪄𝑦3. and ᪄𝑦2. which 

would be significant, namely:

𝑡 ƶ𝜎
1

𝑛2
+

1

𝑛3

1/2

where 𝑡 = 𝑡0.025,𝑛−𝑘

i.e., the value of a 𝑡𝑛−𝑘 variable which is exceeded with probability 0.025. If the difference ᪄𝑦3. − ᪄𝑦2. is 

less than this least significant difference then it can be indicated that the treatment means fall into 

the same group, for example by underlining the pair. This process can be repeated for ᪄𝑦3. and ᪄𝑦1. and 

then for ᪄𝑦1. and ᪄𝑦4. As an example, the results may give:

᪄𝑦2. < ᪄𝑦3. < ᪄𝑦1. < ᪄𝑦4.

This indicates that treatment 4 is on its own.



Analyzing treatment means using a least 
significant difference approach 

9

Since ᪄𝑦2., ᪄𝑦3. fall into the same group and ᪄𝑦3., ᪄𝑦1. fall into the same group, it is worth checking to see 
if ᪄𝑦2. and ᪄𝑦1. fall into the same group. 

If they were this would mean all three of these means fall into the same group and we would show 
this as:

᪄𝑦2. < ᪄𝑦3. < ᪄𝑦1. < ᪄𝑦4.


