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Introduction

In this chapter we will investigate the problem of deciding whether the observed differences
between more than two sample means are purely random or whether there are actually real
differences between the sample means.

The technique of analysis of variance consists of separating the total variability in a set of
experimental results into components associated with the different sources of that variability.
These components are then compared, and this enables us to test the null hypothesis that no
differences exist between the (population) treatment means.
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One way analysis of Variance

The model

A one-way analysis of variance is used to compare k treatments when the experiment provides n;
responses for treatment i, i =12 ,, k. The data available are then n = )}, n; and we have responses
yij » where y;; is the j th observation using treatment |.



2 One way analysis of Variance

Example
Consider a company providing health insurance. The claim amounts over the last month for
four types of policies are given in the table below: (in 000's)

Policy A Policy B Policy C Policy D
85 65 88 124
76 82 97 80
90 77 72 90
54 91 83
85 54
63
46

66



One way analysis of Variance

Example (continued)

There are four “treatments” (ie four different samples that we wish to compare), so k = 4.

The first “treatment” (Policy A) has 5 results (called responses), so n1 = 5. Similarly, the
second treatment (Policy B) has 8 results, so n2 = 8 . Finally, n3 = 4 and n4 = 3.

The total number of responses is simply the sum of the treatment totals and is given by n =
N = 5+8+4+3 =20

We use y;; to stand for the jth result in the ith treatment. For example, y,; stands for the 2nd
treatment 1st result which is 65.



One way analysis of Variance

We'll call the treatment means uy , u, , 43 and p,. Now when we carried out our two-sample t-
test we assumed that each of the samples came from a normal distribution with the same
variance. We shall make the same assumption here. We shall call the common variance ¢2.

Therefore, the Policy A results, y;,; , come from Y;; ~ N(uq , a2). In general results, yij » come from
Yij ~ Ny, 02).

Now the aim of ANOVA is to compare the means - is there any significant difference
between them? Or is it just random variation?

However, instead of comparing the treatment means of 78, 68, 85 and 98 we are going to work
with the "treatment effect”. Basically, the treatment effect (denoted by t; ) is simply how different
the treatment mean is from the overall mean.



One way analysis of Variance

Example (continued)

In our case of health insurance company,
py =78

Overallmean =py =85+ 76 + 90 + ... + 124 + 80 + 90)/20 = 784

So, the treatment effect is as follows:
7, =78-784=-04

Rearranging the formula, we can see that we have essentially split up the treatment means into
two parts — the overall mean and the treatment effect, ie. u; = g + T;



One way analysis of Variance

In general, the result y;; , comes from Y;; ~ N(i; , 0%) which can now be written as ¥;; ~
Nu + 1;, 02)

Splitting this up we get Y;; ~ u + 7; + N(O, 6®) or Y;; = pt + 7; + ¢;;, where ¢;; ~ N(0, 0%).

All we are saying is that any result is the treatment mean plus some random variation.



One way analysis of Variance

The mathematical model is:
Yl] = U + T; + el-j, [ = 1,2, ,k,_] = 1,2, -
where the errors e;; are independent N (0, o?) random variables.

Under this model the error variance does not depend on the treatment concerned, the Y;; 's are
independent, and Y;; is distributed N(u + 7;,0%).

U= %ZiZjE(YU) is the "overall" population mean.

T; is the deviation of the i th treatment mean from g, ie the i th treatment effect, and };n;7; = 0.



2 One way analysis of Variance

Assumptions

There are three assumptions underlying analysis of variance, namely:
(1) The populations must be normal.

(2) The populations have a common variance.

(3) The observations are independent



Estimating the Parameters

Before we estimate the u and 7; 's in our model we need to familiarise ourselves with
the "dot notation" shorthand.

Where a subscript is replaced by a dot, this just means that we sum over all the values
of that subscript. So, for example, Y;, means ¥7_, V;;.

If the symbol includes a bar, the dot represents averaging over all values of the replaced
: ~ 1 «n
subscript. So, for example, Y;., means ;ijlYij.



Estimating the Parameters

The parameters u and 7;,i = 1,2, ..., k can be estimated using least squares by finding values for

U, 71,i = 1,2, ..., k such that:
2 2
EOWILEDWNCETEL)
i i

IS minimized.
Differentiating this partially with respect to 4 and t;,i = 1,2, ..., k, equating to zero and solving
gives the normal equations:

=Y whereY = %ZiZ] Y;; the overall mean of the observed responses, and:

t; =Y, —Y whereY; = niizf Y;; the mean of the i th treatment responses.



Estimating the Parameters

Since };n;7; = 0 the number of independent parameters specifying the treatment means is k, not

k + 1. The weighted sum of the estimated effects is zero, ie };n;T; = 0

We are now going to estimate the common variance ¢* .

The i th treatment responses provide:

2 1 — N\ 2 . .
S = Ezf (Yij —¥,.)" as an unbiased estimator of ¢2
and:

ﬁZj (i - Yi-)z is x2 with (n; — 1) degrees of freedom.



Estimating the Parameters

Combining the information from within each treatment gives:

z (n; — 1)51-2‘ = Z (n; —1)o? = (n — k)o?

E

and so:

1 1 o
02=n_kz (ni—1)5i2=mzz (Yij_Yi.)
[ l ]

provides a pooled unbiased estimator of 62 and %ZiZj (v;; — 17}_)2 is y? with (n — k) degrees of

freedom. This is the estimator we will always use for the common underlying variance of each of
the treatments.



4 Hypothesis

First, we need to state our hypotheses:

The null hypothesis is that the treatment means are equal, i.e., the treatment effects are zero, so:
Hy:r; =0,i=12, ..,k
(H, is the general alternative : t; # 0 for at least one ).

We now have estimates for all the unknowns in our model and are ready to look at how we carry
out our one-way analysis of variance.



Partitioning the Variability

The total variability can be partitioned into two components, one measuring the inherent
variability within the treatments and the other measuring the variability between the treatment
MEeaNSs Vi, Vaxr s Viex-

The result is:

z z (vij — 17**)2 = 2 2 (vij — Yi-)z + 2 n;(Y;. — Y..)?
U | i

i

Say SST = SSR +SSB

The whole point of partitioning the variability is to see how much of the overall variance is
made of this expected “within treatment” variance, SSg, and how much is made up of variance

between the means, SSg. The larger the ‘between-means’ variance is, the less likely it is that we
can assume that they all have the same mean.



6 Calculations

We shall rewrite them in the same way that we rewrote the sample variance in Chapter 1:

)2
Sz:nilz (xi—f)2=ni1[z xlz—(z:fl) ]znil[z xiz—nle

L [

So, we have:
2
. (2 X)) y?
ssp=), ), by=9)" =) D === ) D vh
i i T
= (Vi — )2 = yi._(ZZ-YU) I N A
5Sg Z n (Vi —y) . - Swlen

l i i

SSg = SSp — SSg



7 Inferences

* SSp is the within-treatments or residual sum of squares - it is just the sum of squares of
the residuals from the fit (the estimated errors é;; = Y;; — ¥; ) and is based on (n — 1) — (k —

1) = n — k degrees of freedom, the degrees of freedom remaining after estimating the
parameters for the means. 6% = §Sg/(n — k) is an unbiased estimator of 6% and SS; /0?2

Xn—k-
» SSp is the between-treatments sum of squares.

« When H, is true, SS;/(n — 1) is the overall sample variance and so SS;/a? is y2_;.

« Since SSg and SSg are in fact independent and SSi /a2 is yZ_, it follows that SSz/0?
Xi_,. 85g/(k — 1) is another unbiased estimator of o?.



Inferences

Finally:

SSg/(k —1)  between treatments mean square

SSg/(n—k)

IS Fx_1n—x and Hy is rejected for "large" values of this ratio.

The results are usually set out in an ANOVA table:

residual mean square

Source of variation Degrees of Sums of Mean Squares
Freedom Squares

Between treatments k-1 SSg SSg!(k-1)

Residual n-k SSp SSg /(n-k)

Total n-1 SSr




Question

CT3 September 2015 Q6

Consider a survey of alcohol consumption in three different locations in the UK. In each of the
three locations 50 men are asked about the units of alcohol they consumed during the week
preceding the survey. The results are summarised in the following table:

Location code A B C
Average number of units 26 22 27
Sample standard deviation 7 6 9

Perform a one-way analysis of variance test to test the hypothesis that the location has no impact
on alcohol consumption. [6]



Solution

SSp=49| 72 +67+97)=8,134

26+22+27
3

F= 25

2 2

§S, =50((26-25)" +(22-25)" +(27-25)" ) =700

S3p
> 700 147
F = = =9,
24T SSp T 2 8134 °
147

325

This 1s clearly a rather large value since the 1% point from a F; 5, distribution 1s

4.787, so the null hypothesis is rejected. We conclude that alcohol consumption is
different in different areas.



A
-

8.1 Confidence Intervals for a single treatment mean

In the situation where interest is focused on a particular treatment, say treatment i, ¢ can be
estimated using the residual mean square 42 and a confidence interval for u + t; (ie for

treatment mean y; ) is given by:
y; tto/\n;

where t is based on (n — k) degrees of freedom and % = SSz/(n — k).



A
-

8.2 Confidence Intervals for a pair of treatment means

In the situation where interest is focused on a particular pair of treatments, say treatments 1 and
2 for convenience, then:

_ _ 1 1
var(Y; — Y,) = o* <— + —)
n, np

and a confidence interval for y; —u, = (u + t1) — (u + 7,) = 71 — 75 is given by:
(y y, ) + té 1+1 .
Yi.—Y2)xlo ny, ' n,

where t is again based on (n — k) degrees of freedom.



Question

CT3 September 2018 Q9

For an investigation into drinking habits a random sample of men aged 16-90 is obtained. The
following data are reported for men belonging to different age groups:

Age group 16-24 | 25-44 | 45-64 | 65 and over
Average units per week 3.5 4.8 5.1 4.2
Sample standard deviation 2.3 1.8 1.6 1.1
Sample size 50 65 60 35

(i) Calculate a 95% confidence interval for the expected value of the average units of alcohol per
week consumed by men aged 16-24 based on the sample above. [2]

(i) Calculate the overall average units of alcohol per week consumed by men aged 16-90 in the

sample above. [3]




Question

(iii) Test the hypothesis, using an analysis of variance, that the mean number of units of alcohol
per week is the same for all age groups. [8]

(iv) Calculate a 95% confidence interval for the expected units of alcohol per week consumed by
all men aged 16-90 based on the sample above. [2]

(v) Comment on your results in parts (iii) and (iv) whether the result in part (iv) should be used to
draw inference about the drinking habits of an individual. [2]
[Total 17]



Solution

Using quantiles of the t5,-distribution as an approximation to the required t4q-
distribution.

2.3 2.3
[3.5 ~2.009 2%, 3.5 + 2.009 22| = [2.8465,4.1535]
2]

Total sample size: 50+65+60+35=210
[1]

[1]

Total units: 50 X 3.5 4+ 65 x 4.8+ 60 x 5.1 + 35 x 4.2 = 940

Overall average: 220 = 4476
210

[1]



Solution

ANOVA:
SSp =50 X (3.5 —4.476)% + 65 x (4.8 — 4.476)?
+60 x (5.1 — 4.476)? + 35 x (4.2 — 4.476)*

= 80.48
[3]
SSp =49 x 2.3% + 64 x 1.8% + 59 x 1.6 + 34 x 1.1* = 658.75
2]
. .. . 8048/3
Test statistic: F = 556.75/206 8.3891 [1]
This compares to a 1% quantile of a F; 544 distribution. [1]

This quantile 1s between3.782 and 3.949, and we therefore have sufficient
evidence to reject the null hypothesis that the average number of units of alcohol
per week 1s the same for all age groups. [1]



Solution

(V)

(Vi)

Overall variance in sample:

—SSp = —— (S5 + 555) = 7 (658.75 + 80.48) =3.54 [1]
95% C.L.: [4 476 — 1.96 |-, 4.476 + 1.96 Iif ] [4.222,4.73] 1]

[Alternative solution: 2 = SSgp/(n — k). Then Cl is (4.234,4.718).]

The results 1n part (1i1) indicate that age has an impact on drinking habits,

and therefore, the overall average of units per week and the corresponding
confidence interval in part (1v) might not be meaningful to describe the drinking
habits of any specific individual. [2]

[Total 17]



9 Analyzing treatment means using a least
significant difference approach

Constructing such intervals for all possible pairs of treatments is not recommended - the
interpretation of them becomes difficult as the overall level of confidence of the whole set of
intervals has to be considered.

However, if Hy: 7; = 0, i = 1,2, ..., k has been rejected, a good idea as to whether the treatments
fall into several reasonably homogeneous groups can be obtained as follows.

Step 1
List the observed treatments in order, eg. with k = 4 we might have:

V2. < V3. < YV1. < Vs



9 Analyzing treatment means using a least
significant difference approach

Step 2
We will now examine each of the pairs in order to see whether the means are the same or not.

We do this by using a two-sample test. For example, on the first pair:

Ho:pz = p3
Hy:pp # U3

Our statistic is:

(V3. = Y5.) — (uz — 1)

n 1 1
"J(n—3+n—2)

~

n—=k




9 Analyzing treatment means using a least
significant difference approach

Now, under Hy, u; — u, = 0. Since y3; > y,. there will be a significant difference between the means if
the statistic is greater than the upper 2.5% critical value of the appropriate t distribution:

(V3. — ¥2) — (U3 — uz)

n 1 1
“J(n:*n—z)

0.025,n—k

Rearranging:

_ _ . 1 1
(V3. — ¥2.) > to.025n—k X0 || —+—

nz np

The value on the right-hand side is the “least significant difference”, i.e. the value that the difference
between the sample means needs to exceed to say that there is a significant difference.



Analyzing treatment means using a least
significant difference approach

For a given level of significance, say 5%, calculate the least difference between y5. and y,. which
would be significant, namely:

(1 1)Y?
to (Tl_z + n_3) Whel‘e t = t0.0ZS,n—k
.e., the value of a t,,_j variable which is exceeded with probability 0.025. If the difference y; — y,. is
less than this least significant difference then it can be indicated that the treatment means fall into
the same group, for example by underlining the pair. This process can be repeated for y; and y,. and
then for y;. and y,. As an example, the results may give:

V2. <Y3. < Y1. < s

This indicates that treatment 4 is on its own.



Analyzing treatment means using a least
significant difference approach

Since y,, y3 fall into the same group and y;, y;. fall into the same group, it is worth checking to see
if y,. and y;. fall into the same group.

If they were this would mean all three of these means fall into the same group and we would show
this as:

V2. < Y3 < Y1. < Vs




