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 Motivation
.
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Return is simple to measure.

When measuring risk there are several ways (or measures).



 Variance 
(Var[X]).

• Where X is a random variable depicting Investment Return
• µ is the mean return

Pros
+  Mathematically Tractable

Cons
- Treats upside and downside risk equally
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Continuous Distribution Discrete Distribution



 Variance 
(Var[X]).
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Properties of 
Variance▪ If.  X and Y are two independent random variables then:

var(X+Y) = Var(X) + Var(Y)

▪ For constants a and b,

𝐯𝐚𝐫(𝐚𝐗 + 𝐛) = 𝐚𝟐𝐕𝐚𝐫(𝐗)

2.1
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 Question
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CT8, May 2011, Q.9

You are contemplating an investment with a return of Rs X, where: X = 300,000 - 500,000U 
where U is a uniform [0, 1] random variable. 
 
Calculate each of the following four measures of risk: 
  a) variance of return 



 Solution
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Answer:

(i) Var(X) = 500,0002 * Var(U) 
                   = 2.5 * 1011 * 1/12  
                   = 2.08333 *  1010



Downside 
Semi-Variance

.

Where µ is the mean return

Pros:
     +The focus is on downside risk

Cons:
      -Mathematically less tractable
      -Ignores upside risk
      -Measures downside risk relative to the mean, rather than a benchmark.
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Continuous Distribution Discrete Distribution



Question 
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CT8, May 2007 , Q. 11

Consider a zero-coupon corporate bond that promises to pay a return of 12% next period. Suppose that there 
is a 20% chance that the issuing company will default on the bond payment, in which case there is an equal 
chance of receiving a return of either 8% or 0%. 

Calculate values for the following measures of investment risk: 
(a)  downside semi-variance
 



Solution
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Answer:

Downside semi-variance The expected return on the bond is given by: 
0.80 ×12% + 0.10 ×8% + 0.10 ×0% = 10.4%       

So the downside semi-variance is equal to: 
(10.4 – 8 )2 *0.10 + (10.4– 0) 2 ×0.10 = 11.39%% 



 Question
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CT8, May 2011, Q.9

You are contemplating an investment with a return of Rs X, where: X = 300,000 - 500,000U where U is a 
uniform [0, 1] random variable. 
 
Calculate each of the following four measures of risk: 
a) downside semi-variance of return



Solution
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Answer:

Downside semi-variance of X = 2.5 * 1011 * upside semi-variance of U;     
 
the upside semi-variance of U is by symmetry 1/24 

So,   
downside semi-variance of X is 1.04166 *1010 



Shortfall 
Probability

.

where:
L – chosen benchmark level

• SP measures the probability of returns falling below a certain benchmark level.
• Same as calculating cumulative DF at benchmark L :
                                                              𝑃[𝑋<𝐿]= 𝐹𝑋(𝐿)
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Discrete DistributionContinuous Distribution



Shortfall 
Probability

.

Pros:

❑ Easy to understand

❑ Tractable

❑ Choice of benchmark level

Cons:

❑ No information about the extent of  the shortfall

❑ Ignores upside risk
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 Question
CT8, April 2016 , Q.2

The returns on an asset follow a Normal distribution with mean µ = 6% per annum and variance σ2 = 23% per 
annum.  An investor buys €500 of the asset. 
 
 i) Determine the shortfall probability for the value of the asset in one year’s time below a value of €480.  
 
ii) Explain what can be deduced about an investor’s utility function if the investor makes decisions based on: 
   (b)  the shortfall probability of returns. 
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Solution
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Answer:

i) The shortfall probability required is the probability that the return is lower than 480/500 – 1 =  –4% i.e. 
P(N(6%, 23%) ≤ 4%) 
= P(Z≤ (–4% – 6%)/√(23%))  
= P(Z ≤ –0.20851)  
= 0.417   

ii)
  (b) This corresponds to a utility function which has a discontinuity at the minimum required return.



 Question

18

CT8, May 2011, Q.9

You are contemplating an investment with a return of Rs X, where: X = 300,000 - 500,000U where U is a 
uniform [0, 1] random variable. 
 
Calculate each of the following four measures of risk: 
a) shortfall probability, where the shortfall level is Rs 100,000



Solution
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Answer:

P(X < 100,000) = P(U > 0.4) 
                         = 0.6 



 Expected Shortfall; 
E[max(L-X,0)]

.

where:
L – chosen benchmark level

Same as calculating E[max(L-X,0)]

5

20

Continuous Distribution Discrete Distribution



Conditional Expected 
Shortfall

.

 

6
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Discrete DistributionContinuous Distribution



 Question
CT8, October 2016, Q.1 

A farmer has a small apple tree which produces one harvest of apples per year.  The number of apples the tree 
produces follows a Poisson distribution with a mean and variance of 8.
Determine the expected shortfall below a harvest of 5 apples
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Solution
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Answer:

P(X = 0) × (5 – 0) = 0.002 
P(X = 1) × (5 – 1) = 0.011 
P(X = 2) × (5 – 2) = 0.032 
P(X = 3) × (5 – 3) = 0.057 
P(X = 4) × (5 – 4) = 0.057  
 
Summing the above, we get 0.159 
 
So the expected shortfall below 5 apples is 0.159 apples 



 Question
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CT8, May 2007, Q.11

Consider a zero-coupon corporate bond that promises to pay a return of 12% next period. Suppose that there 
is a 20% chance that the issuing company will default on the bond payment, in which case there is an equal 
chance of receiving a return of either 8% or 0%. 

Calculate values for the following measures of investment risk: 
a)   shortfall probability based on the risk-free rate of return of 8.5%

b) the expected shortfall below the risk-free return conditional on a shortfall occurring.



Solution
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Answer: 

a) Shortfall probability 
The probability of receiving less than 8.5% is equal to the sum of the probabilities of receiving 8% and 0%, ie 

0.20. 

b)   Expected conditional shortfall  

The expected shortfall below the risk-free rate of 8.5% is given by: 
(8.5 – 8) ×0.10 + (8.5 – 0)× 0.10 = 0.90%  

The expected shortfall below the risk-free return conditional on a shortfall occurring is equal to:
 
Expected shortfall/shortfall probability = 0.90%/0.2 = 4.5%



Value at Risk (VaR).

The Question Being Asked in VaR:

❑ “What loss level is such that we are P% confident it will not be exceeded in N
business days?”

❑ For e.g. “ we are 95% confident that we will not loose >$1M over next 5 days

❑  VaR is a function of two parameters: the time horizon (N days) and the  confidence level (P%)

7
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Value at Risk (VaR). 7
VaR is the loss level that will not be exceeded with a specified probability.

Probability (Inv. Return < VaR Loss) = Confidence Level (100- P)%
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 VaR Assumptions.

Assumptions underlying calculation of VaR:

▪ Often returns are assumed to be normally distributed.

▪ In practice, returns may be skewed (or fat – tailed)

7.1
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 Question 
(Discrete)

.
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CT8, October 2016, Q.1 

A farmer has a small apple tree which produces one harvest of apples per year.  The number of apples the tree 
produces follows a Poisson distribution with a mean and variance of 8. 
 
Determine the 10% Value at Risk level for the number of apples produced.   



Solution.
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Answer:

P(X = 0) = (80 e-8)/0! = 0.00034 
P(X = 1) = (81e-8)/1! = 0.00268 
P(X = 2) = (82 e-8)/2! = 0.01073 
P(X = 3) = (83e-8)/3! = 0.02863 
P(X = 4) = (84e-8)/4! = 0.05725   

So P(X ≤ 4) = 0.00034 + 0.00268 + 0.01073 + 0.02863 + 0.05725 = 0.09963 
 
Alternatively, directly from the Formulae & Tables: P(X ≤ 4) = 0.09963 [1] 
 
P(X = 5) = (84e-8)/5! = 0.09160   So P(X ≤ 5) = 0.191236  (or directly from the Formulae & Tables)  
 
So the 10% VaR level is 5 (or –5) apples. 



 Question (Continuous).
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CT8, April 2015,Q.2

Assume X has a Normal distribution with mean µ = 5% and variance σ2 = 100%%. 
 (iii) Calculate the 5% Value at Risk. 



Solution.
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Answer:
 



Advantages of VaR.

▪ VaR captures an important aspect of risk in a single number

▪ It is easy to understand

▪ It asks the simple question: “How bad can things get?”

▪ Bank regulators also use VaR in determining the capital a bank is required to keep  for the risks it is 
bearing.

7.2
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 Useful Formulae on 
VaR

.

𝑉𝑎𝑅(𝑋%)𝑑𝑜𝑙𝑙𝑎𝑟 𝑏𝑎𝑠𝑖𝑠 = 𝑉𝑎𝑅(𝑋%)𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑏𝑎𝑠𝑖𝑠 𝑋 𝑎𝑠𝑠𝑒𝑡 (𝑜𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) 𝑣𝑎𝑙𝑢𝑒

7.3
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 Calculating VaR for Normal 
Distribution

. 7.4
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For normal distribution with mean μ and standard deviation σ

VaR (X%) = [μ + z
(100-x)%  

σ]

Where, 
• VaR(X%) – the X% probability value at risk 
• z

(100-x)%    
- the critical z-value based on the normal distribution and the selected x% probability 

• σ – standard deviation
 

 



• Consider an investment bank, where a VaR limit (confidence level 99%) of say $50,000 is
• imposed on a certain derivatives trader.

• The meaning of this is that a loss of more than $50,000 should occur only once in every  hundred 
trading days on average.

• But because of the very definition of VaR, there is no differentiation between small and  very large 
violations of the $50,000 limit.

• The eventual loss could be $60,000 as well as $600,000

 Why VaR is Problematic?. 7.5
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Shortcomings of VaR.

VaR level at P% Alternative Situation. 
VaR is the same,  but the potential loss is larger.

7.6
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 Tail VaR.

▪ Tail VaR answers the question: “If things do get bad, just how bad will they be.”

▪ Same as Expected Shortfall

▪ Conditional Tail VaR is same as conditional expected shortfall

▪ Calculated as E[max(L-X,0)]

▪ If L is chosen to be a particular percentile point on the distribution, then the risk measure is known as the 
Tail-VaR.

8
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 Question
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CT8, May 2012, Q.3

Investment returns (% pa), X , on a particular asset are modelled using the probability distribution: 

For a portfolio consisting of INR 20 crores invested in the asset, calculate the following  
 
(i) Mean   
(ii) Variance 
(iii) 95% VaR over one year 
(iv) 95% TailVaR over one year. 



Solution.
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Answer:

i) Mean is given by =‐10*0.1+5.5*0.9 = 3.95  

ii) Variance = (3.95‐(‐10))2 * 0.1 + (3.95 – 5.5)2 * 0.9 = 21.62  

iii) 95% Value at Risk at   
VaR(X) = -t where t = max { x : P(X<x) ≤ 0.05}  
P(X<-10) = 0 and P(X< 5.5)= 0.1 
t = -10         

Since t is a percentage investment return per annum, the 95% value at risk over one year on a Rs. 20 crores 
portfolio is 20x0.10 = Rs. 2 crores. This means that we are 95% certain that we will not make profit of less than 
Rs. 2 crores over the next year.



Solution.
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iv) The expected shortfall in returns below -10% is given by 
 
E(min(-10-X,0)) = Σ (-10 - x)P(X=x)       x<-10                    
                          = 0

On a portfolio of Rs. 20 crores, the 95% TailVaR = 0. 
This means expected reduction  in profit below Rs. -2 crores is zero. That is, profit can not fall below Rs. -2 
crores.



.

Thank You
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