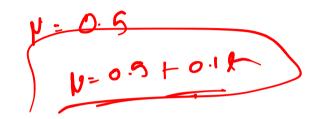


Subject: Statistical & Risk Modelling -2

Time Inhomogeneous Markov Jump

Agenda

- 1. Time In-homogenous Markov jump process
- 2 Chapman Kolmogorov equation
- Kolmogorov Forward differential equations
- مردادی مرط المرابع Kolmogorov Forward differential equations
- 5. Occupancy probability
- 6. Probability of going to another state
- 1. Integrated form of KFD and KBD
- 8. Applications



Res: 1-1 1-618.7 Time

Time Inhomogeneity

25-30 mg ~ PHS (25,30)

Pus (5) 6

Manker jambber (62)

In this chapter we discuss time-inhomogeneous Markov jump processes. The transition probabilities $P(X_t = j \mid X_s = i)$ for a time-inhomogeneous process depend not only on the length of the time interval [s,t], but also on the times s and t when it starts and ends. This is because the transition rates for a time-inhomogeneous process vary over time.

the Pull (8)

To-as intensity

Heren Heat

Chapman Kolmogorov Eqns

The more general continuous-time Markov jump process $\{X_t, t \ge 0\}$ has transition probabilities:

$$p_{ij}(s,t) = P[X_t = j|X_s = i] \quad (s \le t)$$

which obey a version of the Chapman-Kolmogorov equations, written in matrix form as:

$$P(s,t) = P(s,u)P(u,t)$$
 for all $s < u < t$

or equivalently:

$$p_{ij}(s,t) = \sum_{k \in S} p_{ik}(s,u) p_{kj}(u,t)$$
 for all $s < u < t$

Scock

Kolmogorov Eqns updated

Kolmogorov's forward differential equations (time-inhomogeneous case)

Written in matrix form these are:

$$\frac{\partial}{\partial t} P(s,t) = P(s,t) A(t)$$

where A(t) is the matrix with entries $\mu_{ii}(t)$.

Kolmogorov's backward differential equations (time-inhomogeneous case)

The matrix form of Kolmogorov's backward equations is:

$$\frac{\partial}{\partial s} P(s,t) = -A(s) P(s,t)$$

Prove using Chapman Kolmogorov equation

Kolmogorov Eqns updated

K 4

Y

Write down Kolmogorov's forward and backward differential equation for $p_{HD}(s,t) \otimes p_{HS}(s,t)$. $P_{HD}(s,t) \otimes p_{HS}(s,t)$.

IACS

Other probabilities

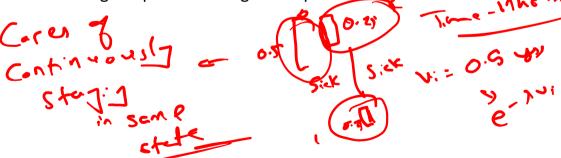
Occupancy probabilities for time-inhomogeneous Markov jump processes

For a time-inhomogeneous Markov jump process:

$$p_{ii}(s,t) = \exp\left(-\int_{s}^{t} \underline{\lambda_{i}(u)} du\right) = \exp\left(-\int_{0}^{t-s} \lambda_{i}(s+u) du\right)$$

where $\lambda_i(u)$ denotes the total force of transition out of state i at time u.

Prove using Chapman Kolmogorov equation



7: - 0.9 m [].

Pi: (5, k

IACS

Other probabilities

Question

A Markov jump process is used to model sickness and death. Four states are included, namely H, S_1, S_2 and D, which represent healthy, sick, terminally sick and dead, respectively. We are told that the people who are terminally sick never recover and die at a rate of $1.03(1.01)^t$ where t is their age in years.

Calculate the probability that a terminally sick 50-year-old dies within a year.

$$P_{52} D (50,51)$$
= $1 - P_{52} s_2 (50,51)$

Other probabilities

a" = a"

Question

$$= \frac{1 - exp \left[-\frac{1.03}{exr} \left(\frac{1.01}{s} \right) \right]}{exr}$$

$$= \frac{1 - exp \left[-\frac{1.03}{exp} \left(\frac{1.01}{s} \right) \right]}{exr}$$

$$= \frac{1 - exp \left[-\frac{1.03}{exp} \left(\frac{1.01}{s} \right) \right]}{exp}$$

$$= \frac{1 - exp \left[-\frac{1.03}{exp} \left(\frac{1.01}{s} \right) \right]}{exp}$$

Other probabilities

Probability that the process goes into state j when it leaves state i

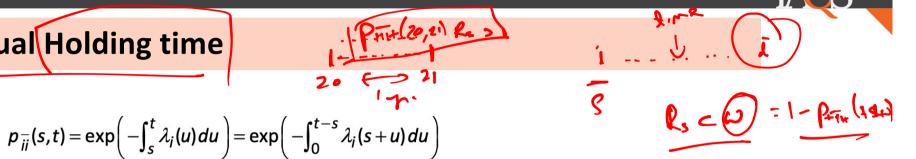
Given that the process is in state i at time s and it stays there until time s+w, the probability that it moves into state j when it leaves state i at time s+w is:

$$\frac{\mu_{ij}(s+w)}{\lambda_i(s+w)} = \frac{\text{the force of transition from state } i \text{ to state } j \text{ at time } s+w}{\text{the total force out of state } i \text{ at time } s+w}$$

Discording to Santing time

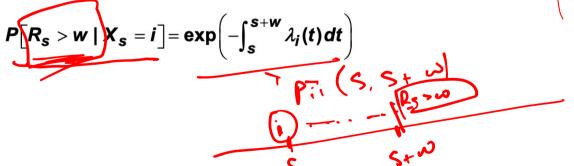
Nilsanting time

Residual Holding time



For a general Markov jump process, $\{X_t, t \ge 0\}$, define the residual holding time R_s as the (random) amount of time between <u>s</u> and the next jump:

$${R_s > w, X_s = i} = {X_u = i, s \le u \le s + w}$$



> state
> (s, strs)=

IACS

Residual Holding time

$$P(R_{5} = 3) = 1 - P(R_{5} \leq \omega)$$

$$CA(9R_{5} = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_{5} = 3) = 1 - exp \left(-\frac{1}{5} \lambda(\omega) \cdot d\omega\right)$$

$$Pd(R_$$

IACS

Residual Holding time

PAI \$ 120137

$$= -d \left[exp \left(-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] capital$$

$$d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp \left[-\left(\Delta \left(s+\omega \right) - \Delta \left(s+\omega \right) \right] d > exp$$

Current Holding time

Jorner lenjone you in the current state?

For a full justification of this equation one needs to appeal to the properties of the *current* holding time C_t , namely the time between the last jump and t:

$$\{C_t \geq w, X_t = j\} = \{X_u = j, t - w \leq u \leq t\}$$

$$\{C_t \geq \omega, X_t = j\} = \{X_u = j, t - w \leq u \leq t\}$$

(+ 11 your 1-sext

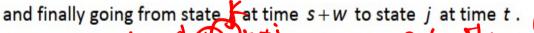
Integrated form of Kolmogorov Backward Eqn

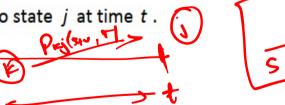
$$p_{ij}(s,t) = \sum_{l \neq i} \int_{0}^{t-s} e^{-\int_{s}^{s+w} \lambda_{i}(u) du} \mu_{il}(s+w) p_{lj}(s+w,t) dw$$

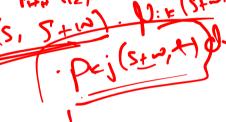
provided $j \neq i$.

the probability of remaining in state i from time s to time s+w

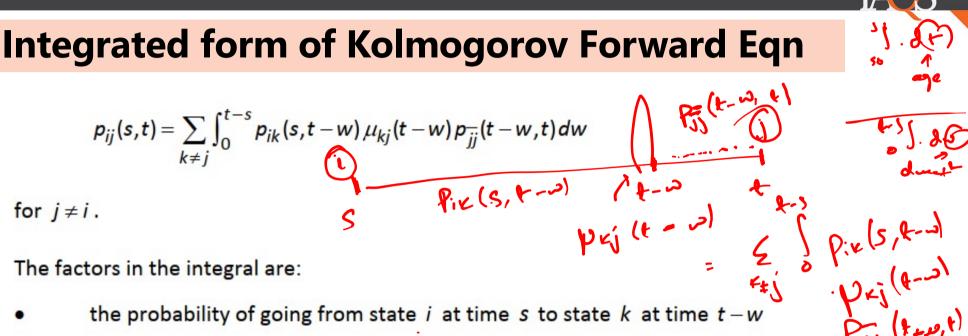
then making a transition to state $\langle at time s + w \rangle$



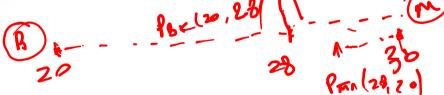




Integrated form of Kolmogorov Forward Eqn



- the probability of going from state i at time s to state k at time t-w
- then making a transition from state k to state j at time t-w
- and staying in state j from time t-w to time t w



Exam style question

- State the condition needed for a Markov Jump Process to be time inhomogeneous. [1]
- Describe the principal difficulties in modelling using a Markov Jump Process with time inhomogeneous rates. [2]

A multi-tasking worker at a children's nursery observes whether children are being 'Good' or 'Naughty' at all times. Her observations suggest that the probability of a child moving between the two states varies with the time, t, since the child arrived at the nursery in the morning. She estimates that the transition rates are:

From Good to Naughty: 0.2 + 0.04t

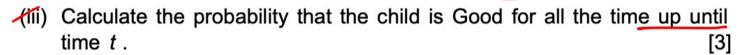
From Naughty to Good: 0.4 - 0.04t

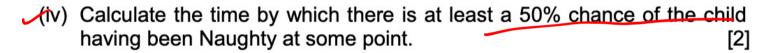
where t is measured in hours from the time the child arrived in the morning, $0 \le t \le 8$.

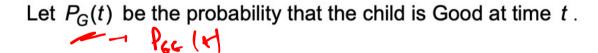
is more difficult

Exam style question

A child is in the 'Good' state when he arrives at the nursery at 9am.

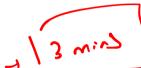






(v) Derive a differential equation just involving $P_G(t)$ which could be used to determine the probability that the child is Good on leaving the nursery

at 5pm. [2]

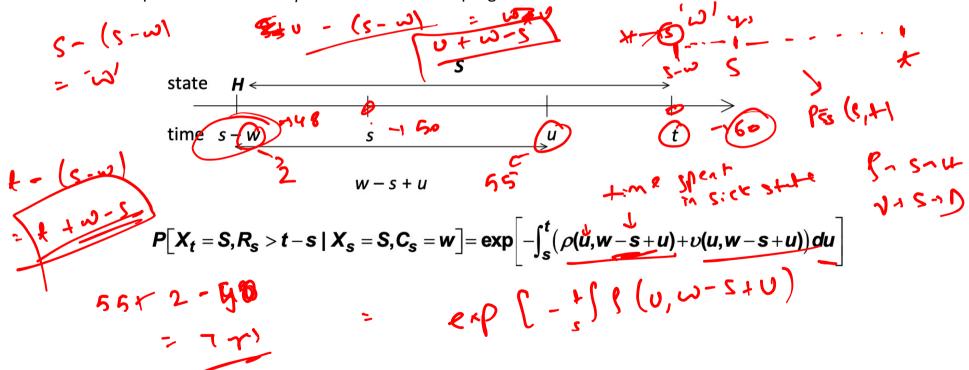


d Pag (6, 1):

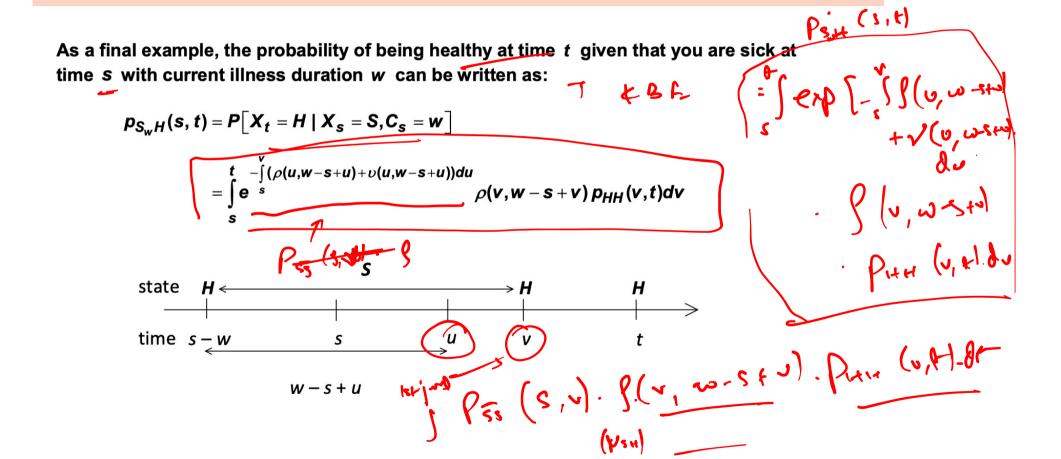
Sickness and Death Model $\sigma(t)$ S: Sick H: Healthy $\rho(t)$ v(t) $\mu(t)$ D: Dead Sick thas gives The first and (it of (ment holder) The first and (it of (ment holder)

Sickness and Death with Duration

To calculate the probability of remaining continuously sick during [s,t] given a current illness period [s – w , s], one needs to update the values of ρ and ν as the illness progresses



Sickness and Death with Duration



Sickness and Death with Duration

Consider again the marriage model above , only now assume that the transition rate d(t) depends on the current holding time. (So the chance of divorce depends on how long a person has been married.) Write down expressions for the probability that:

- (i) a bachelor remains a bachelor throughout a period [s,t]
- (ii) a person who gets married at time s-w and remains married throughout [s-w,s], continues to be married throughout [s,t]
- (iii) a person is married at time t and has been so for at least time w, given that they were divorced at time s < t w.

Thank You