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Time homogeneous Markov Jump Process

Definition - Time-homogeneous Markov jump process are processes in which the transition

rates do not vary over time, so the transition probabilities P(X; =j | X; = i) depend only on the
length of the time interval, t —s.



1.1 Notations

The non-homogeneous (i.e., time-inhomogeneous) Markov model offers particularly rich,
and potentially confusing, opportunities to invent different notations for the same
quantities. To try to limit any such confusion, we make the following remarks.

We have, p;j(s, t) to mean the probability of the process being in state j at time ¢,
conditional on being in state i at time s < t.

The traditional actuarial notation would reserve the symbol t for duration since time s, in
which case the above probability would be expressed p;;(s, s + t). Just as likely, the life table

symbol ps would be adapted, so that p;;(s, s + t) would be written as tpsij.

We have, u;;(s) to mean the transition rate from state i to state j at time s.
Following the actuarial tradition, the time (or age) may be indicated by a subscript, so that
the same rate may be written u./.



2 The Chapman-Kolmogorov equations

Here we will consider the time-homogeneous case, where probabilities P(X; =j | Xy = i)
depend only on the length of the time interval, t — s.

The transition probabilities of the Markov jump process:
pij(t) =PXe=j Xy =1)
obey the Chapman-Kolmogorov equations:

pij(t+s) = z Pik(s)pyj(t) foralls,t >0
kes



The transition Matrix

Denoting by P(t) the matrix with entries p;;(t), known as the transition matrix, the
Chapman Kolmogorov equation reads:

P(t+s) =P(s)P(t) foralls,t >0

If we know the transition matrix P(t) and the initial probability distribution q; =
P(X, = i), we can find general probabilities involving the process X; by using the Markov

property.

For instance, when 0 < t; <t, < - <t,:

Plxo = i,%;, = j1,%¢t, = Jor s X, = ju] = @ibij, @D, 2 — t1) D), . (En — tno1)



3.1 Transition Rates

To differentiate the transition probabilities and avoid technical problems with the mathematics, we
will make the following assumption.

We will assume that the functions p;;(t) are continuously differentiable.
Noting that:
0 fi#j
pij(0) =6y = {1 ifi =]
the assumption of differentiability implies the existence of the following quantities:

— lim pij(h) — o;;
r=0 h—0 h

d
Hij = apij(t)

pi; is the force of transition from state i to state j.
Transition rates in time-homogeneous processes do not vary over time.

The function §;; in the expression above is known as the Kronecker delta.



3.1 Transition Rates

Equivalently, the following relations hold as h - 0(h > 0) :

pij(h) = .
1+h,uu+0(h) Ifl—]

The interpretation of the first line of is simply that the probability of a transition from i to j during
any short time interval [s, s + h] is proportional to h; hence the name transition rate or transition
intensity given to ;.



3.1 Transition Rates

Generator matrix

The generator matrix A of a Markov jump process is the matrix of transition rates. In other
words, the i, j th entry of A is p;;.

Hence each row of the matrix A has zero sum.

The relationship u;; = —3Y ;. ;; is often used as a working definition of u;;.

The transition rate y;; is then defined as minus the sum of the transition rates out of state i.



A
-

The time-homogeneous health-sickness-death

4 model

H: Healthy S: Sick

D: Dead

What will be the transition matrix for the above diagram?
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A
-

The time-homogeneous health-sickness-death
model

The generator matrix for the HSD model is:

Here the order of the states has been taken to be H, S, then D (as usual).
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5.1 Kolmogorov’s forward differential equations

Transition rates are of fundamental importance in that they characterize fully the distribution of
Markov jump processes. To see this, substitute t = h and s = t in Chapman eqgn:

Pyt +h) = ) pueOPi(R) = pis(®) +h ) pue(Opas + 0(h)

kesS keS

The second equality follows from the relationship:

huy; + o(h) ifj+k

Picj (1) = {1 + hig +o(h)  ifj=k

This leads to the differential equation:

d . .
Epij(t) = Z Pir(O)uy; forall i, j
kes
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5.1 Kolmogorov’s forward differential equations

Kolmogorov's forward differential equations (time-homogeneous case) These can be written
‘H in compact (i.e., matrix) form as:

d

—P(t) = P(t)A

PO =P
where A4 is the matrix with entries M-

Recall that A is often called the generator matrix of the Markov jump process.
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5.2 Kolmogorov's backward differential equations

‘H Kolmogorov's backward differential equations (time-homogeneous case)

These can be written in matrix form as:

d P(t) = AP
= P(t) = AP(t)
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5.3 Kolmogorov’s differential equations

Elementary Cases

For example, consider the two-decrement model, in which the transition intensities are

constant.

The Solution to the Kolmogorov equation can be given as:

Po1(X,x +1t) = Ho1 [1 _ e—[#u1+#uz}t]
Ho1 + Ho2
pﬂZ(x,x + f} = Ho2 [1 — E_U‘IH + Ho2 }t:l

Ho1 T Ho2

K o1

0 = active

1 =dead

Ho2

2 = retired
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6 Poisson Process

Holding times and occupancy probabilities

Distribution of the first holding time

The first holding time of a time-homogeneous Markov jump process with transition rates y;

is exponentially distributed with parameter:

= —Hijj = Z Hijj

j#l

In other words:

P[To >t|Xo =i]=e*t
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6 Poisson Process

Holding times and occupancy probabilities

Probability that the process goes into state j when it leaves state |

Given that a time-homogeneous Markov jump process is currently in state i, the probability
that it moves into state j when it leaves state i is given by:

Hijj  the force of transition from state i to state j
Ai the total force of transition out of state i

Also, given a jump has occurred, the time at which it took place does not affect the probability
of the jump being to a particular state.
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Poisson Process

Holding times and occupancy probabilities

Distribution of holding time random variables and occupancy probabilities
For a time-homogeneous Markov jump process, let W, denote the holding time (or waiting time)
in state /. Then:

W; ~ Exp(4)
where 4; is the total force of transition out of state /.

So the probability of staying in state i for at least t time units (ie the occupancy probability for
state i) is:

P(W, >t)=p-(t) =€ "'
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A
-

Expected time to reach state k starting from state |

Let m; denote the expected time for the process to reach state k given that it is currently in

state i. Then m; can be calculated using the recursive formula:

m=—t Y Ay
f J
4 j#i k A

This formula is given on page 38 of the Tables. Note that the Tables use the notation Tjj instead

of y; to denote the force of transition from state / to state j.
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7 The Jump Chain

If a Markov jump process is examined only at the times of its transitions, the resulting
process, denoted {J'?n :n=0,1,..}, where f(n is the initial state, and for n > 1:

xﬂ = xTﬂ. +T1+'”+Tn_1
is called the jump chain associated with X .

The only way in which the jump chain differs from a standard Markov chain is when the jump
process {X;, t> 0} encounters an absorbing state. From that time on it makes no further
transitions, implying that time stops for the jump chain.

To deal with the jump chain entirely within the framework of Markov chains it is permissible to
treat the absorbing state in the same way as for a Markov chain, so that transitions continue to
occur, but the chain remains in the same state after the transition.
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Maximum Likelihood Estimators

Consider the illness-death model, which has three states: healthy (H), sick (S) and dead (D):

The observations in respect of a single life are now:
(a) the times between successive transitions; and (b)
the numbers of transitions of each type.

If the transition intensities are constant, each spell of
length t in the healthy or sick states contributes a
factor of the form e~(#+9)t or e =W+ regpectively to
the likelihood, so it suffices to record the total waiting
time spent in each state.

H: Healthy

o(t)

u(t)

p(t)

S: Sick

D: Dead

u(t)
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8 Maximum Likelihood Estimators

Define:

V; = Waiting time of the i th life in the healthy state

W; = Waiting time of the i th life in the sick state

S; = Number of transitions healthy — sick by the ith life
R; = Number of transitions sick — healthy by the ith life
D; = Number of transitions healthy — dead by the ith life
U; = Number of transitions sick — dead by the ith life

N
We also need to define totals V =) V; (and so on).
i-1
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8 Maximum Likelihood Estimators

Using lower case symbols for the observed samples as usual, it is easily shown that the
likelihood for the four parameters, |, o, v, p, given the data is proportional to:

(u+o)vo—(v+p)w d u s r

L(u,v,0,p)=€ Hvop

Solving the above likelihood, gives the estimators as:
The maximum likelihood estimators are:

~ D ~
ﬂ:—l D=

U R
vV w’

.S . R
v: Pw
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Maximum Likelihood Estimators

Estimating transition rates in a time-homogeneous Markov jump process

The maximum likelihood estimate of the transition rate y;; is:

n;;

n Jj

,U" e
1 tf

where nj; is the number of transitions from state i to state j, and t; is the total waiting time (or

total holding time) in state i .
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8 Maximum Likelihood Estimators

The maximum likelihood estimator of y;; has the following properties:

* itis asymptotically normally distributed
* it is asymptotically unbiased
« asymptotically, its variance is given by the Cramér-Rao lower bound (CRLB).

The formula for the CRLB is given on page 23 of the Tables.
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