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Time homogeneous Markov Jump Process
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Definition - Time-homogeneous Markov jump process are processes in which the transition 
rates do not vary over time, so the transition probabilities P(𝑋𝑡 = j | 𝑋𝑠 = i) depend only on the 
length of the time interval, t – s.
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Notations
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1.1

The non-homogeneous (i.e., time-inhomogeneous) Markov model offers particularly rich, 

and potentially confusing, opportunities to invent different notations for the same 

quantities. To try to limit any such confusion, we make the following remarks.

We have, 𝒑𝒊𝒋(𝒔, 𝒕) to mean the probability of the process being in state 𝒋 at time 𝒕, 

conditional on being in state 𝒊 at time 𝒔 ≤ 𝒕.

The traditional actuarial notation would reserve the symbol 𝑡 for duration since time 𝑠, in 

which case the above probability would be expressed 𝑝𝑖𝑗(𝑠, 𝑠 + 𝑡). Just as likely, the life table 

symbol 𝑡𝑝𝑠 would be adapted, so that 𝑝𝑖𝑗(𝑠, 𝑠 + 𝑡) would be written as 𝑡𝑝𝑠
𝑖𝑗

. 

We have, 𝝁𝒊𝒋(𝒔) to mean the transition rate from state 𝒊 to state 𝒋 at time 𝒔. 

Following the actuarial tradition, the time (or age) may be indicated by a subscript, so that 

the same rate may be written 𝜇𝑠
𝑖𝑗

.



The Chapman-Kolmogorov equations
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2

Here we will consider the time-homogeneous case, where probabilities 𝑃 𝑋𝑡 = 𝑗 ∣ 𝑋𝑠 = 𝑖  

depend only on the length of the time interval, 𝑡 − 𝑠.

The transition probabilities of the Markov jump process:

𝑝𝑖𝑗(𝑡) = 𝑃 𝑋𝑡 = 𝑗 ∣ 𝑋0 = 𝑖

obey the Chapman-Kolmogorov equations:

𝒑𝒊𝒋(𝒕 + 𝒔) = ෍

𝒌∈𝑺

𝒑𝒊𝒌(𝒔)𝒑𝒌𝒋(𝒕) for all 𝒔, 𝒕 > 𝟎



The transition Matrix

6

3

Denoting by 𝑃(𝑡) the matrix with entries 𝑝𝑖𝑗(𝑡), known as the transition matrix, the 

Chapman Kolmogorov equation reads:

𝑃(𝑡 + 𝑠) = 𝑃(𝑠)𝑃(𝑡) for all 𝑠, 𝑡 > 0

If we know the transition matrix 𝑃(𝑡) and the initial probability distribution 𝑞𝑖 =
𝑃 𝑋0 = 𝑖 , we can find general probabilities involving the process 𝑋𝑡 by using the Markov 

property.

For instance, when 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 :

𝑃 𝑥0 = 𝑖, 𝑥𝑡1
= 𝑗1, 𝑥𝑡2

= 𝑗2, … , 𝑥𝑡𝑛
= 𝑗𝑛 = 𝑞𝑖𝑝𝑖𝑗1

𝑡1 𝑝𝑗1𝑗2
𝑡2 − 𝑡1 … 𝑝𝑗𝑛−1𝑗𝑛

𝑡𝑛 − 𝑡𝑛−1



Transition Rates
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3.1

To differentiate the transition probabilities and avoid technical problems with the mathematics, we 

will make the following assumption.

We will assume that the functions 𝑝𝑖𝑗(𝑡) are continuously differentiable. 

Noting that:

𝑝𝑖𝑗(0) = 𝛿𝑖𝑗 = ቊ
0  if 𝑖 ≠ 𝑗

1  if 𝑖 = 𝑗

the assumption of differentiability implies the existence of the following quantities:

𝜇𝑖𝑗 = ቤ
𝑑

𝑑𝑡
𝑝𝑖𝑗(𝑡)

𝑡=0

= lim
ℎ→0

𝑝𝑖𝑗(ℎ) − 𝛿𝑖𝑗

ℎ

𝝁𝒊𝒋 is the force of transition from state 𝒊 to state 𝒋. 

Transition rates in time-homogeneous processes do not vary over time. 

The function 𝛿𝑖𝑗 in the expression above is known as the Kronecker delta.



Transition Rates
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3.1

Equivalently, the following relations hold as ℎ → 0(ℎ > 0) :

𝑝𝑖𝑗(ℎ) = ൝
ℎ𝜇𝑖𝑗 + 𝑜(ℎ)  if 𝑖 ≠ 𝑗

1 + ℎ𝜇𝑖𝑖 + 𝑜(ℎ)  if 𝑖 = 𝑗

The interpretation of the first line of is simply that the probability of a transition from 𝑖 to 𝑗 during 

any short time interval [𝑠, 𝑠 + ℎ] is proportional to ℎ; hence the name transition rate or transition 

intensity given to 𝜇𝑖𝑗.



Transition Rates
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3.1

Generator matrix

The generator matrix 𝐴 of a Markov jump process is the matrix of transition rates. In other 

words, the 𝑖, 𝑗 th entry of 𝐴 is 𝜇𝑖𝑗.

Hence each row of the matrix 𝐴 has zero sum.

The relationship 𝝁𝒊𝒊 = −∑𝒋≠𝒊𝝁𝒊𝒋 is often used as a working definition of 𝝁𝒊𝒊. 

The transition rate 𝜇𝑖𝑖 is then defined as minus the sum of the transition rates out of state 𝑖.



The time-homogeneous health-sickness-death 
model
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4

What will be the transition matrix for the above diagram?



The time-homogeneous health-sickness-death 
model
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Kolmogorov’s forward differential equations 
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5.1

Transition rates are of fundamental importance in that they characterize fully the distribution of 

Markov jump processes. To see this, substitute 𝑡 = ℎ and 𝑠 = 𝑡 in Chapman eqn:

𝑝𝑖𝑗(𝑡 + ℎ) = ෍

𝑘∈𝑆

𝑝𝑖𝑘(𝑡)𝑝𝑘𝑗(ℎ) = 𝑝𝑖𝑗(𝑡) + ℎ ෍

𝑘∈𝑆

𝑝𝑖𝑘(𝑡)𝜇𝑘𝑗 + 𝑜(ℎ)

The second equality follows from the relationship:

𝑝𝑘𝑗(ℎ) = ൝
ℎ𝜇𝑘𝑗 + 𝑜(ℎ)  if 𝑗 ≠ 𝑘

1 + ℎ𝜇𝑘𝑘 + 𝑜(ℎ)  if 𝑗 = 𝑘

This leads to the differential equation:

𝒅

𝒅𝒕
𝒑𝒊𝒋(𝒕) = ෍

𝒌∈𝑺

𝒑𝒊𝒌(𝒕)𝝁𝒌𝒋 for all 𝒊, 𝒋



Kolmogorov’s forward differential equations 
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5.1

Kolmogorov's forward differential equations (time-homogeneous case) These can be written 

in compact (i.e., matrix) form as:

𝒅

𝒅𝒕
𝑷(𝒕) = 𝑷(𝒕)𝑨

where 𝐴 is the matrix with entries 𝜇𝑘𝑗.

Recall that A is often called the generator matrix of the Markov jump process.



Kolmogorov’s backward differential equations 

14

5.2

Kolmogorov's backward differential equations (time-homogeneous case) 

These can be written in matrix form as:

𝒅

𝒅𝒕
𝑷(𝒕) = 𝑨𝑷(𝒕)



Kolmogorov’s differential equations 
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5.3

Elementary Cases

For example, consider the two-decrement model, in which the transition intensities are 

constant.

The Solution to the Kolmogorov equation can be given as: 



Poisson Process
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6

Holding times and occupancy probabilities

Distribution of the first holding time



Poisson Process
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Holding times and occupancy probabilities

Probability that the process goes into state j when it leaves state I

Given that a time-homogeneous Markov jump process is currently in state i , the probability 

that it moves into state j when it leaves state i is given by: 

Also, given a jump has occurred, the time at which it took place does not affect the probability 

of the jump being to a particular state. 



Poisson Process
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Holding times and occupancy probabilities

Distribution of holding time random variables and occupancy probabilities  



Expected time to reach state k starting from state i
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The Jump Chain
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The only way in which the jump chain differs from a standard Markov chain is when the jump 

process {𝑋𝑡, t≥ 0} encounters an absorbing state. From that time on it makes no further 

transitions, implying that time stops for the jump chain. 

To deal with the jump chain entirely within the framework of Markov chains it is permissible to 

treat the absorbing state in the same way as for a Markov chain, so that transitions continue to 

occur, but the chain remains in the same state after the transition.



Maximum Likelihood Estimators 
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Consider the illness-death model, which has three states: healthy (H), sick (S) and dead (D):

The observations in respect of a single life are now: 

(a) the times between successive transitions; and (b) 

the numbers of transitions of each type.

If the transition intensities are constant, each spell of 

length t in the healthy or sick states contributes a 

factor of the form 𝑒− 𝜇+𝜎 𝑡 or 𝑒− 𝑣+𝜌 𝑡  respectively to 

the likelihood, so it suffices to record the total waiting 

time spent in each state.



Maximum Likelihood Estimators 
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Maximum Likelihood Estimators 
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Using lower case symbols for the observed samples as usual, it is easily shown that the 

likelihood for the four parameters, μ, σ, v, ρ, given the data is proportional to: 

Solving the above likelihood, gives the estimators as:



Maximum Likelihood Estimators 
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8

Estimating transition rates in a time-homogeneous Markov jump process 



Maximum Likelihood Estimators 
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The maximum likelihood estimator of 𝜇𝑖𝑗 has the following properties: 

• it is asymptotically normally distributed 

• it is asymptotically unbiased 

• asymptotically, its variance is given by the Cramér-Rao lower bound (CRLB). 

The formula for the CRLB is given on page 23 of the Tables. 


	Slide 1
	Slide 2: Today’s Agenda
	Slide 3: Time homogeneous Markov Jump Process
	Slide 4: Notations
	Slide 5: The Chapman-Kolmogorov equations
	Slide 6: The transition Matrix
	Slide 7: Transition Rates
	Slide 8: Transition Rates
	Slide 9: Transition Rates
	Slide 10: The time-homogeneous health-sickness-death model
	Slide 11: The time-homogeneous health-sickness-death model
	Slide 12: Kolmogorov’s forward differential equations 
	Slide 13: Kolmogorov’s forward differential equations 
	Slide 14: Kolmogorov’s backward differential equations 
	Slide 15: Kolmogorov’s differential equations 
	Slide 16: Poisson Process
	Slide 17: Poisson Process
	Slide 18: Poisson Process
	Slide 19: Expected time to reach state k starting from state i
	Slide 20: The Jump Chain
	Slide 21: Maximum Likelihood Estimators 
	Slide 22: Maximum Likelihood Estimators 
	Slide 23: Maximum Likelihood Estimators 
	Slide 24: Maximum Likelihood Estimators 
	Slide 25: Maximum Likelihood Estimators 

