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1. The Poisson Distribution 

2. The Poisson model of mortality

3. Estimating the force of mortality

4. Asymptotic distribution of 𝜇

5. The Poisson Process



The Poisson Distribution
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The Poisson is a discrete probability distribution in which the random variable can 

only take non-negative integer values. 

A random variable X is said to have a Poisson distribution with mean λ (λ > 0) if the probability 

function of X is:

Remember that E X( )   and var( ) X   . 



The Poisson model of mortality
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If we assume that we observe 𝑁 individuals as before, for a total of 𝐸𝜒
𝑐 person-years, and that the 

force of mortality is a constant 𝜇, then a Poisson model is given by the assumption that 𝐷 has a 

Poisson distribution with parameter 𝜇𝐸𝑥
𝑐. That is:

𝑃(𝐷 = 𝑑) =
𝑒−𝜇𝐸𝑥

𝑐
𝜇𝐸𝑥

𝑐 𝑑

𝑑!

Under the observational plan described above, the Poisson model is not an exact model, since it 

allows a non-zero probability of more than N deaths, but it is often a very good approximation. 

The probability of more than N deaths is usually negligible. 



Estimating the underlying force of mortality

5

3

The Poisson likelihood leads to the following estimator of (constant) 𝜇 .

Maximum likelihood estimator of 𝜇 under the Poisson model

ƿ𝜇 =
𝐷

𝐸𝑥
𝑐

Try deriving the above formula for the maximum likelihood estimator of 𝜇 .



Properties of estimator
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The estimator ƿ𝜇 has the following properties:

(i) 𝐸[ ƿ𝜇] = 𝜇

So ƿ𝜇 is an unbiased estimator of 𝜇.

(ii) var[ ƿ𝜇] =
𝜇

𝐸𝑥
𝑐

In practice, we will substitute ƶ𝜇 for 𝜇 to estimate these from the data.



Asymptotic distribution of 𝝁
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When 𝐸𝑥
𝑐 is large, the distribution of the estimator ƿ𝜇 is:

ƿ𝜇 ∼ Normal 𝜇,
𝜇

𝐸𝑥
𝑐

These properties show that this is a sensible estimator to use. Its mean value equals the true 

value of 𝜇 and it varies as little as possible from the true value. The normal approximation 

allows us to calculate approximate probabilities and confidence intervals for 𝜇 .

This model is an approximation to the two-state model and provides the same numerical 

estimate of 𝜇.



The Poisson process
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The Poisson process forms the simplest example of a Markov jump process in continuous time.

Definition 

The standard time-homogeneous Poisson process is a counting process in continuous time, {𝑁𝑡, t 

≥ 0}, where 𝑁𝑡 records the number of occurrences of some type of event within the time interval 

from 0 to t . The events of interest occur singly and may occur at any time. 

The Poisson process is very commonly used to model the occurrence of unpredictable incidents, 

such as car accidents or arrival of claims at an office.



The Poisson process
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The probability that an event occurs during the short time interval from time t to time t+h  is 

approximately equal to λh for small h ; the parameter λ is called the rate of the Poisson process.

Formally, an integer-valued process {𝑁𝑡, t ≥ 0}, with filtration {𝐹𝑡, t ≥ 0}, is a Poisson process if:

𝑃 𝑁𝑡+ℎ − 𝑁𝑡 = 1 ∣ 𝐹𝑡 = 𝜆ℎ + 𝑜(ℎ)

𝑃 𝑁𝑡+ℎ − 𝑁𝑡 = 0 ∣ 𝐹𝑡 = 1 − 𝜆ℎ + 𝑜(ℎ)

𝑃 𝑁𝑡+ℎ − 𝑁𝑡 ≠ 0,1 ∣ 𝐹𝑡 = 𝑜(ℎ)

where the statement that 𝑓(ℎ) = 𝑜(ℎ) as ℎ → 0 means limℎ→0
𝑓(ℎ)

ℎ
= 0.

As may be seen from the definition, the increment 𝑁𝑡+ℎ - 𝑁𝑡 of the Poisson process is 

independent of past values of the process and has a distribution which does not depend on t . It 

therefore follows that the Poisson process is a process with stationary, independent increments 

and, in addition, satisfies the Markov property.



The Poisson process
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Distribution of increments 

𝑁𝑡 is a Poisson random variable with mean λt . More generally, 𝑁𝑡+𝑠 - 𝑁𝑠 is a Poisson random 

variable with mean λt , independent of anything that has occurred before time s .



The Poisson process
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Sums of independent Poisson processes

Suppose that claims are made to two insurance companies, A and B. The numbers of claims 

made to each are independent and follow Poisson processes with parameters λA (claims per day) 

and λB respectively. Then the combined number of claims (𝐴 + 𝐵)𝑡 is a Poisson process with 

parameter (λA + λB).

Since the processes are independent of one another, it follows that their increments are 

independent of one another. These increments are Poisson with parameters λA(t-s) and λB(t-s). 

Their sum is therefore Poisson, with parameter (λA – λB)(t-s). 

They are therefore also stationary and independent. 

So, we do have a Poisson process with parameter (λA + λB).



The Poisson process
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Inter-event times 

Since the Poisson process 𝑁𝑡 changes only by unit upward jumps, its sample paths are fully 

characterised by the times at which the jumps take place. Denote by 𝑇0, 𝑇1, 𝑇2, … the successive 

inter-event times (or holding times), a sequence of random variables. 



The Poisson process
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Distribution of holding time random variables

𝑇0, 𝑇1, 𝑇2, … is a sequence of independent exponential random variables, each with parameter 𝜆.

Proof:

𝑃 𝑇0 > 𝑡  is the probability that no events occur between time 0 and time 𝑡, which is also equal to 

𝑃 𝑁𝑡 = 0 = 𝑝0(𝑡) = 𝑒−𝜆𝑡.

Now the distribution function of 𝑇0 is 𝐹(𝑡) = 𝑃 𝑇0 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡, 𝑡 > 0, implying that 𝑇0 is 

exponentially distributed.

Consider now the conditional distribution of 𝑇1 given the value of 𝑇0.

where the third equality reflects the independence of the increment 𝑁𝑡+𝑠 − 𝑁𝑠 from the past of the 

process (up to and including time 𝑠 ).
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