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QL.

Solution 1:
i)

¥ - B Y =Y, - g, Ju—(1- e’ + Pe
O, Y7 =2¥ u+p’ =l (f, + B Y, —28Y u+ pur)
o, (¥, —u) =€l (B, + B(Y,, —u)*)

or, ¥, = u+e (B, + (Y, — ) )"

MNOw,

E(Y)=E(u)+E(e, (8, + B (Y, —u))")

e, and Y, , are independent.

E(Y,)= u+E(e, JE(B, + B(Y,, —1)")")

or, E(¥)=p+0xE(f8,+B(Y_ —u)’)™)

Hence, E(Y,) = u

MNow,

Cov(¥,.Y, )= E(XY, ) - E(Y)E(Y.,)

or, CowY,.Y, )= E((u+e (B, +B (Y, — ) ) Nu+e (B, +B (Y  —u)))-u

o, COY) =BG + e, (B + ¥ =)™ + p (ot BT =)™ +
‘ e (3, + (Y, _F‘]:}Mfu JB + B(Y _.-"-":':]M]_.”:

o, CoMUY, )= + (e VE( By + BlY, = i)™ )+ (e, VE(By + B (Y, = 1))+
i Ele, )E(e, VE((S, + B (Y, — ) ) (5, + B(Y_, , — )" ) ) -

or, Cov(}. Y, )= u +0+0+0x E((8, + A(¥,, - u)’ }".F{ﬂl'l + A _.'”]-1 )=

or, CoW(Y,.¥Y _)1=0 [6]
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i)

e [a it

L

Var(Y, | ¥,_,)=Var(e, War(f, + B,(¥, |_.U}_1]=Jﬁn + (¥, _.-”:':

From the above equation we can see that variance of ¥, depends on Ye.. Similarly recursively we can see
that variance of ¥t will depend on ¥,.. Hence ¥, and Y, are dependent. [2]

i)
The first difference of Xt can be written as given below:

AX, =X, X,

Mow,

E(AX,) = E(X,)-E(X )

or, E(AY, )= E(0.5Y, + 0.3+ 0.1)— E(0.5Y_, +0.3(r = 1)+ 0.1)
Or, E(AX ) =05u+03t+0.1-05u-03(r-1)-0.1=03

The mean is independent of t and hence constant.

e [a it

L

Cov{AX AX, )=CowX, -X, X _ —-X )

Or, CoAX AX, 1=CoviD3+¥ Y 03+Y  -¥ )

Or, CowlAX, AX, )=Cow¥ =Y _.Y_. -¥_. )

or, CoWAX,,AX, )= Con(¥,.Y, )~ Cow(¥,.¥,_, )~ Cow¥, .Y, ) +Con(¥, .Y, )
Or, CoAX AX, 1=0-0-0+0=0

The auto covariance function is constant hence the first difference of X; is stationary.

(5]
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Q2.

(i) The characteristic equation is
1—z—.52"+.52%=0.
The cubic polynomial of the left hand side factorizes as (1—z)(1—
5z7%). There is exactly one root on the unit circle. Therefore,
d=1. 1]
Rewriting the model in terms of X = (1 — B)Y, we have
};—i - "':"X!—Z = Zt + .32{_1._
which is ARMA(2.1). Thus, the model for Y; is ARIMA(2,1.1).[1]

(ii) The characteristic polynomial of X is (1 — .52?), whose roots are
++/2. As the roots are outside the unit circle, the process { X} is

stationary. 2]

(ili) The model equation is X; = 5X, 5 + Z; + .3Z,_,. By taking
covariances of both sides of this equation with Z;, Z; | and Z;_»,
we have

cov(Xy, Z,) = cov(bX, s+ Z,+ .37, |, Z,)
= 0+0°+0=0>%
cov(Xy, Zyy) = ecov(5Xy o+ Z + .32, 24 )
= 0+0+.30% = .30%,
cov(Xy, Zy_0) = r*m'{ X, o+ 2 +. ?Zt_l, Zi2)
= 5062 +0+0=.50"
2]
By taking covariances of both sides of the model equation with

Xi, X1, Xy_s and X, (for k > 2), we have
10) = eov(Xy, Xy) = cov(5X,_0+ 2, + 32,1, X})

= .57(2) + o® + .090?% = .57(2) + 1.0902, (1)
1) = ecov(Xy, Xeoy) = cov(5X 2 + Zy + 32,1, X))

= 5v(1) 4+ 0+ 307 = 57(1) + 302, (2)
12) = ecov(Xy, Xio } =cov(.5Xi-2 + 2 + 321, Xi-2)

= 57(0)+0+0=57(0). 3)
v(k) = cov(Xy, Ai—k} =cov(.5Xy_a + 2, + 32,1, Xy )

= Sy(k—2)+0+0=5vk—2), k>2 (4)
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Q3.

(1)

2]
By substituting for 4(2) from (3) into (1), we have v(0) = .25v(0)+
1.0902, i.e., v(0) = 10962 /75. Equation (2) implies v(1) = 302/5.
Thus, p(1) = ~v(1)/4(0) = 45/109. Equations (3) and (4) together
imply p(k) = .5p(k — 2) for k > 2 It follows that

(.5)Ikl/2 if |k| is even,
k) = 2
pk) {(45;1[19}{.5}“‘“'-”32 if |k| is odd. 2]

(a)  The process can be written as (1—0.4B —0.2B%)Y, =(1+0.025B)Z, +0.016.
The characteristic equation is 1- 0.4z -02z> =0.
There 1s no root having magnitude 1. Therefore, d = 0.
Hence, the process is ARIMA (2,0,1).

(b)  (1-04-02)E(Y,)=0.016. Therefore, E(Y,)=0.016/0.4=0.04 or 4%.

(c) The two roots of the characteristics equation are —1++/6 , i.e., 1.4495 and —
3.4495, both of which have magnitude larger than 1. Hence, the process {Y;}
1s stationary.
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(i) (a)

(b)

This AR process has the same characteristic equations and the same roots as
in part (iii). The & order auto-covariance is of the form (given in Core
Reading, chapter CT6-12, section 3 .4)

o= A(-1+46)" + A4,(-1-46)
where A, and A, are constants. Therefore, the & order auto-correlation is of
the form

— Lt i k
2 ACTO)" + 4,(1-6) —a(-1+46) " +(1—a)-1-+6)"

Fo '4I + '43

&

here @ 15 a constant. We can determine o by calculating o directly from the
Yule-Walker equation

¥y =04y, +0.2y,,
which implies that p, = v—=% =0.5 . Equating this value with the general
Fa -

expression for k=1, we have
05=al(- 1+~u"_} '+|[I—r1':||[—l—-..|";} ' and therefore,
0.5-(-1-+f6)" 2.6 +3
(1 vB)  —(-1-48) ' 4JE
It follows that
P =[zi;]{—l+ﬁ:‘ [*‘;,_ Jc 1-+6)"*
= B062{0.6899) 0. 1935{—3.25‘39} .

The ACF values for the first few lags are gy = 0.5, oo =04, oo =026, p, =
0.184.

=0.8062 .

(Partial credit for determining a few ACF values: 1 mark for correct
computation of each value. Maximum partial credit with no general solution 15
3)

Three diagnostic checks are as under (any two should fetch full credit).

o [nspection of the graph of the time-plot of residuals: Visual inspection
might reveal a pattern, such as uneven fluctuations or clusters of only
positive / only negative residuals, which indicate inadequate fit.

o Inspection of the sample autocorrelation functions of the residuals: Too
many ACF or PACF values outside the range +2/./N (N being the
sample s1ze) may indicate poor fit or too few parameters.

o  Counting turming points: The number of turning points (points where the
value of the time series 15 smaller/larger than both neighboring values) for
a sequence of independent random variables has average 2(N — 2)/3 and
variance (16N — 29)/90. If the residuals from a particular fit has too few or
too many turning points (with reference to a normal distribution with the
said mean and variance), then the fit is inadequate.

(BT ]
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Q4.

(i) The model can be written in the form:
(1+aB-ad’B)Y, =2,

So the characteristic equation is:

1 +ax—o'x'=0.

Applying the quadratic formula, we see that this has roots:
x=(1£5)/ 20

Roots must lie outside the unit circle, so we require that (vV5-1)/2.Ja) = 1 and (V5+1)/2 g = 1,
which means, o < (V5 -1)/2.

(i) VYe=-a¥_ +ta ¥ 2+Z
The Yule-Walker equations are:

Cov[l. Y] =7 =—ap+apte. e Equation (1)

Cov[Y. ¥Yica] =1 =—-wy+ o . e Equation (2)
Cov[¥,¥-2] =v1 =-—-ap+a*ye e Equation (3)
From equation (2), ¥, =—aye/ (1 - w) e Equation (4)

Substituting the value of y, in equation (3), we have

Yo =—a [—aya/ (1- :11]] +o =2 o — :1'1}. Yo/ (1 o J— Equation (5)
Substituting the values of v, and y» in equation (1), we have

w=—af —ay/ (1 -+ .Qai—a"). v/ (1 - ) + 5

Thus,

yo= oo (1 —a®) /(1 =20 = 2a*+ o).

Substituting the value of v, in equations (4) and (5), we have
n=—c"a/(l-2a-2a"+ o).

p=o (2a—a')/ (1 =20 - 2a* + ).
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Q5.

(@)

(ii)

The model is
(X,-X,_)=alX, ,-X, ,)+&,, & s are uncorrelated, with mean 0 and variance o.

Since the mean of the process is known to be 0, the usual estimator of the parameter & is

200
A A ;(Xi _Xi—l]{X:'—l _X;'—z) 587.83
a=p = o0 = =0.6277.

Z(Xi -X. )z 036.49
i=2
The estimator of autocovariance at lag 0 is

- 1 & > 936.49
=— > (X -X_,)= =4.6825.
}(U 200 ;( i i-1 )
o’ o’
Using the relation y, = —= 5, We estimate
l-p l-a

6% =(1-a)p, = (1-0.6277*)x 4.6825 = 2.8376.

The forecast of x2¢; is obtained from
(300 (1) = x0 ) = @(x,) — X,00) = 0.6277x(1.93—0.82) = 0.6967 .
Thus, £,,(1)= x,,, +0.6967 =1.93+0.6967 = 2.6267 .
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Q6.

(i) The purposes of a practical time series analysis may be summarized as:

* Description of the data;

» Construction of a model which fits the data;

s Forecasting future values of the process;

* Deciding whether the process is out of control, requiring action;

+ For vector time series, investigating connections between two or more observed
processes with the aim of using values of some of the processes to predict those of
the others.

(i) AR(1) and random walk are Markov.
MA(L) and AR(2) are not Markow.

(iii) a. E[X(t)] =a+ bt +E[¥()].

Since Y(t) is stationary, E[Y(t)] is equal to some constant ¢ that does not depend
onf.

Therefore, E[X(t)] = a + bt + ¢, which depends on .
It follows that X{t) cannot be stationary.

b. E[VX(t)] = E[X(t)] — E[X(t —1)] =a+bt+c—[a+b(t—1)+c]=b.
Thus, the mean does not depend on .
Cov[VX(t), VX(s)] = Covl{Xx(t) — X(t — 1)} {X(s) — X(s — 1)}]
Cov[{b+V¥(t)—Y(t —1)}{b+¥(s)-¥Y(s - 1)1
Cov[{Y(t) = ¥(t = D}{¥(s) = ¥(s - 1)}]
Covw[¥(t), ¥(s)] — Cov[¥(t), ¥(s — 1)] — Cov[¥(t — 1), ¥(s)]
+ Cov[Y(t —1),¥(s — 1)]
=Gt —s5)—-Clt =5+ 1) = Cyl(t—5—1) + Gyl — 5),
where C; is the covariance function of the stationary process Y(t). The last

expression depends on ¢ and 5 only through the difference t — 5. Hence, the
process VX (t) is stationary.

As VX(t) is stationary but X(t) is not, the process X (£} is [(1).

{iv) Compute the difference between the processes:
X, () = X3(t) = alX, (t = 1) = X;(t = 1)] + blX,(t — 1) = X, (¢t - 1)]
+ey(t) — ex(t)] -
= (a = b)[Xy(t — 1) — Xz(t — 1)] + [e2(t) — e2(t)] .
Let¥(t) = X;(t) — X;(t), and e(t) = e, (t) — ez (L).
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Q7.

Since ey (t) and e, (t) are white noise processes, e(t) is also a white noise process.
Therefore, ¥(t) must be an AR(1) process.
¥(t) is stationary as long as |a — b| < 1.

Since X;(t) and X;(t) are themselves /(1), and their difference (i.e., a specific linear
combination) is stationary whenever |a — b| < 1, the two processes are cointegrated
whenever |a — b| < 1.

(i) The main linear models used for modeling stationary time series are:
*  Autoregressive process [AR)

An autoregressive process of order p (the notation AR(p) is commonly used) is a sequence of
random variables {X;} defined consecutively by the rule:

Me= o (K- p) oz (Xz - g+ +itp (Meo - P+ 8

Thus the autoregressive model attempts to explain the current value of X as a linear
combination of past values with some additional externally generated random varlation.

*  Moving average process (MA)

A moving average process of order q, denoted MA(g), is a sequence {Xt } defined by the rule:

x|=|-|"9|+|319|:l' -------- +ﬁ‘qe|q
The moving average model explains the relationship between the X, as an indirect effect, arising from
the fact that the current value of the process results from the recently past random error terms as well
as the current one.

Autoregressive moving average process ([ARMA)
The two basic processes (AR and MA) can be combined to give an autoregressive moving

average, or ARMA, process. The defining equation of an ARMA(p,q) process is:

Mo= o (Ko - ) oz (Koz- g+ +itp (Kep - )+ B+ Prleg +ot PgBiag
[6]

(ii)
a. This is MA[1) process and hence it is stationary (as it is the sum of stationary white
noise terms). Therefore we can classify it as ARIMA[D,0,1).

b. This is an ARMA(2,3) process.

This process cannot be differenced, so to be able to classify it as an ARIMA(2,0,3), we must
check that it is 1{0), i.e. stationary.

Since [1-1.4B%) ¥, = £, + 0.5 £, 5, the characteristic equation of the AR terms |s:
dA)=1-142" =0  =»A=+08452

Since both of the roots are less than one in magnitude the process s not stationary and so we
cannot classify it as an ARIMA({2,0,3) .

It is a non-stationary ARMA(2,3) process.
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C.

(i)

Vo

Vo

Yoz

Yirz

Yoik

This is an ARMA(2,1) process.

This process can be differenced as follows:
Ho-14X , +04X =8, 48,

(M:. Xpa) = 0.8 (52— Xea) SEr+ Eqa

A —-04AN =8, +Ey

This process cannot be differenced again, so to be able to dassify it as an ARIMA(L,1,1), we
must check whether this differenced process Is stationary {l.e. the original process is | {1)).

Since [1- 0.4B) A X; = £, + £ 4, the characteristic equation of the differenced AR terms
I

$M=1-04A=0 ==A=25

Since the root Is greater than one in magnitude the differenced process is stationary (i.e. the
original process is | (1)). Therefore, we can classify it as an ARIMA(L,1,1) .

[4]

The process is stationary as it the sum of stationary white nolse terms, so we can calculate the
autocovariance function {igmoring the 3.1's as they will not affect the results and noting that
i =¥

- cﬂ"ﬂ' {Xr,xr}= '.'Elrﬂ}fg]
=Cov(e,+0.25€,,+05€,,+0.25e e, +0.258,,+05e,,+025€,,)
=o' +0.258%a + 0.5 0 + 0.25% 0

=1.375a"

= Cov (X;, X1
=Cov(e,+0.25€,+05€,;+035¢e ,;€,, +025¢ ,;+05¢e ;+0.25€,,)
=0.250" + (0.5 [0.25) o + (0.5) (0.25) &

=05qa°

= Cow (X, Xr3)
=Cov(e,+0.25€,,+05€6,,+0.35e ,;€,,+025e ;+05e,,+0.25e,;)
=05 a +0.25%

= 05625 a

= Cowv (X, X..3)
=Cov(e,+0.25€,;+05€;+035¢g ;6,3 +025¢ ,+05e, . +0.25€)
=025¢

=0for k] =3

Since py = v [ ¥o the autocorrelation function is:

M=
Paga

1

=0.364
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0.409
0.182
Ofor k] =3

i
L

i}
[V
D,

L
L

2
3
Lk
[5]
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Q8.

(i)

X =4 +8B,

A, =054 +058_ +e"
B =074, ,-0.74,,+e"

Using matrix notation we get,
4, 0.50.5% 4., 0 0YyA4._, el
}': - = + RS
B, 070 1B =070} B, _, e
0.50.5 0o 0 el
Or, ¥ = ¥+ Yoot
0.70 —0.70 e

The Eigen values of first matrix are given by the following equation,
A2—051-035=0

Hence, | Al < 1

Similarly for second matrix, | 4] < 1

As all the Eigen values are less than 1, hence the process Y, is stationary. 3]

(ii)
a) X, = (a+ 1)X,_, — (a + 025a)X,_, + 0.25a*X,_; + &,

O X, — Xeoqy =a (Xemy — Xioa) — 0.25a%(Xin— Xi3) + e

oV, =a¥,_, - 0.25a%Y,_, + e, assuming¥. = X, — X._,

So X, 1s ARIMA(2,1,0) process if it is (1)

Now, (1 — aB + 0.25a?B?) ¥, = ¢,

The characteristic equation is, 1 — ad + 0.25a¢%4* =0, ord =

=N Y

To meet stationary condition, |A] > 1,0r |a| < 2

Hence X, is ARIMA(2,1.0) process with |a]| < 2 [2]
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b) Now Cov(Y, . & ) =Cov(e,,e)=o

Yo = Cov(Y,Y,) = ay, — 025 a?y, +a® ... (1
Taking co-variances with Y . Y2 and Yy we ge
Yi=ay,— 025a’y, .............. (2)

Va=ay,— 025a’y, ... (3)

Vi = @¥i—1 — 0.25 a?yy_;

From (2), ¥; = ﬁ _______________ (4)

Substituting (3) in (1) we get,

Yo = ay; — 0.25 a®(ay, — 0.25 a’y,) + a2

1-0.25a*
Or, (1-(025a%)?)y, = 0B 0)a, 4 52
_ [1+025a%) o

Or, ¥o = (1-0.25 z2)3

. _ a (1+0252%) o @ 2
Hence. y1 = (140.25 a?) [1=-0.25 a?)? T (1-0.25a%)? a
Forkz2 yp = a¥p-1— 025a’yp_y ..o (5)
Now ¥y follows the below equation
Ay +kdy = (05a)% y oo (6)

Substituting k by k-1 and k-2 we get

A + (k= 1Ay = (0.5a)" %Y y, 4

A+ (k= 2)4; = (05a) %y

Substituting the above two equation in eqn (5) we get,

Yi = a(0.5a) % V[ + (k — DAz2] = 0.25 a®(0.5a) %D [A; + (k — 2)A2]

Or, y, = A, a* (0.5)%-1 [1 - %] + Apa* (0.5)*D[(k - 1) — 3 (k - 2)]

Or, yi = Aia® (0.5)% + kd,a® (0.5)*

Or, 4, + kdy = (0.52)°% y,
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Which is the original equation. Hence y, follows equation (6)

MNow putting k = 0 we get,

_ [1e0z5a%) o
0™ 1-0.25 a?)?

L=y

Putting k = 1| we get,

1 ot

4= gmh— A= (1-0.25a2)?

¢) =004 hence ¥, = 0.04Y,_, — 0.0004Y,_, + e,
Yi=X,— X, Or X, =V, + X,

Since X, X1, oounn. , Xsp are observed values

X5y = Y51 + X

X5z = Y52 + X5y

So the forecasted values are

X5y = ¥s1 + Xso  and Xg3 = Y5 + X5

Where

V51 = 0.04 (x50 — X49) — 0.0004(x59 — Xy45)

And Ve = 0.04 Ve, — ﬂ.ﬂﬂ{]q‘{xgn - x.‘q)
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Qo.

i)

Since e are independent from Xi, X4, ... and E(et) = 0 we have that

E(Xe) = u+ E(erJa + B(Xe—1 — p)?)
E(X) =pu+E()EGa+BX,_y —w)?)
EX)=u+0+EGa+pX,_, —p)?)
E(X,) =p

Cov(X; Xi—s) = E(X¢ Xi—s) — E(XD)E(X—s)

Cov(X, X,-) = E((u + enfa + BXe—y — w2 (1 + eeosy/a+ By — 02)) — 42

Let A; = ya + (X, — p)?
Cov(X,X,—s) = E((u + e A + e oA, _)) — 1

Cov(X X,—s) = E(u> + pe' A, + pe' Ay + erer A Ay ) — p?

Cov(X, Xi-s) = E(u*) + uE (e")E(Ap + HE (" *)(Ar—s) + E(€,00—5A A1-) — 1
Cov(X, X,_o) =p* +pu+0= E(Ay +u=0=+ (A, + E(ErE;_SA,AI_;] — u?
Cov(X, X,-s) = E(eret—s‘qaﬂa—x)

Now e; is independent of X.-, as above, and that e, is independent of e,_ A, A;_,
Cov(X, X,—;) = E(e, )E(e,_ AA-s)

Cov(X, X, ) =0+E(e,__AA4,_,)

Cov(X, X,-) =0

Thus X, and X, _; are uncorrelated.
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Q10.

i) p=1, g =4 hence it will follow ARMA(1,4)

(1]
ii) Non-linear non stationary time series models includes:-

Bilinear models are those that exhibit “bursty” behaviour:
Xn T Cz(/Yn—l ¥ /1) = /l A+ en * [kn—l * b(/\’n—l - /lkn—l

Threshold autoregressive models are used to model “cyclical” behaviour:
a,(X,, —u)+e, ifX, , <d,

X, =u+ v
al (Xn—l K Iu)+ en.ﬁphl 2 d’

Random coefficient, autoregressive models is a sequence of independent random
variables:

X, =u+a, (X, -u)+e, wherela,,a,......,a,}is a sequence of independent random
variables

Autoregressive with conditional heteroscedasticity (ARCH) models are used to model asset
prices, where we require the volatility to depend on the size of the previous value:

/\’r =ute, Jao +£ak(X:~k —lu)z
k=1

..Only 4 names (0.25*4=1.0) + Definitions (4*0.5=2)

i3]

iii) X; follows MA(1), hence we can write
X, =e, + fe,,.Where e, ~ (0,0'2)
Now, var(.X, )= varle, + fe, )

= var(e, )+ f° var(e, ,)
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5

oy T

Now, AY, =(0.6+ 037+ X,)~[0.6+0.3( 1)+ X, ]

=03+(X, - X, )

Hence var(AY, ) =[covi X, - X, . X, =X, )]

=[2  (0) = ¥ (=D = 7 (D] e

S Now,y (0)=(1+ 7)o’
And, ¥ ()=y.(-1)=covie, + Pe, .e + Be ) = fo’
Therefore, from (2) we get,

var(AY,) =[2(1+ f)a* ~2B0° 1 =21 g+ g ]
.(0.5)

MNow, var(AY )—var(X,)
=[2=28+28 0" =(1+ 7)o’
=[1-28+ 410"

=(1-f)" =0

Henre the standard deviation of first difference of ¥, is higher than that of X;
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Q11.

Solution 10:

i)
Ve = Y1 FYez + @3Yi-3 + €
Cov(¥e, ¥e-1) = Cov(aYe—q + AzYe—n + A3Ve—3 + €, V1)
Vi =¥ty +asy, +0

Dividing both sides by y, gives autocorrelation on LHS at lag 1

L=t taptasp——————— (€]
=p(1-a;) =, +asp;
CoV(Ye, Ve-z) = COV(@1YVimg + AV + A3Vi-3 + €, Vi-2)
Y2 = @1¥1 + ax¥p +asy; + 0

Dividing both sides by y,

Pz = aapy + oz +azp;
= pp=(mtadp+a——————— 2

Substituting (2) in (1)

p1(1 —az) = a; + asl(a; + az)p; + a,]
=ay +az(ay + az)p; + aza;
@y +asa; @y + azd;
P1 1-a; —as(e; +as)
_ (ag +a3)[ay + @05

Cl-ay —az(ay + as) :

91(1 —a; — az(a;, + Q’s)) =

ii)
034009
P1 = 1203-03(06)

pz =0.6p;+a;
=0.6(075)+ 0.3
=045+03
=0.75 2

iii) PACF at Lag' = ACF at Lag ' = 0.75
PACF at Lag2 = 22724 = 075°075% _ 478571 2

1-p? 1-0.752

iv) The process is a AR(3) process and hence the PACF will be significant for lags up to 3. The
PACF for Lags 1 and 2 is 0.75 and 0.428 are significant. From Lag 4 onwards, the PACF
values will become insignificant (1.5 Marks)

There is no MA order in the process. In an AR process, the ACF gradually falls to zero. Here
ACF at lag | and lag 2 are 0.75 but they will gradually fade off after a few more lags. Higher-  (3)
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lag autocorrelations will satisfy the Yule-Walker equation py = 0.3 (pi.1 + prz + pk3)- So the
values will tail off quite quickly to zero, always taking positive values. (1.5 Marks)

Q12.

i) Lack of stationarity:
* lack of stationarity may be caused by the presence of deterministic effects in the guanitity being
observed. For ex. Deterministic trend or cycle such as seasonal effects.
& |f the process observed is the integrated version of a more fundamental process.
= For ex. A company which sells greeting cards will find that the sales in some months will be much
higher than in others. [3]

i)
a) Any of the below is a form of ARIMA(p,d,q) process
(1-B)? @(B) (Xt-p) = B(B)e: where g(B) = 1-£ B'ai and 8(B) = £ B/ §j

(VeXt — ) =P ai( VXt — 1 — p) +er + XU Blet — j (2]

b) Main steps involved in Box-Jenkins methodology:
& Tentative identification of a model from the ARIMA class
* Estimation of the parameter in the identified model
» Diagnostic checks [2]
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c)

d)

If the sample auto correlation coefficients decay slowly from 1 then this indicates that further
differencing is required. This is not the case for d=1, which means that the differencing of the original
series is required once hence d=1.

Further the correct value of d minimise the sample variance. This also indicates that d=1. [2]

Classify the time series as ARIMA(p,d.q)
1. X= n.BEt_l + 8
This is a MA(1) process and hence it is stationary. Therefore we can calssify it as ARIMA(D0,0,1) process.

2. Xt=2X;a+ g +0.5 era

This is an ARMA(2,3) process. This process can not be differenced so we can classify it as ARIMA (2,0,3),
we also must see if 1{0) is stationary.

=(1-2B%)X; = e,+0,5e,.3, the characeteristic equation of AR terms is

= @(A)=1-2A*=0

A= +-1/v2, both the roots of the characteristic equation are less than 1. We can not classify the process
as ARIMA(2,0,3). Hence its a non stationary ARMA(2,3) process.

3. Ri=1.5K:1+.5X 0+ er+ ey

This is an ARMA(2,1) process.

The process can be differenced as follows
K158+ 580z = e+ B2

= (M- Xe1)-.5(Xe-1-Xe2) = e+ @11

=VXt — .5Vt —1=e+ewm

This process can not be differenced further hence we take d=1.
To classify the process as ARIMA(L,1,1) we need to check if the differenced process is stationary.
The characteristic equation is (1-.5A)=0 which implies A=2

The differenced process is stationary hence we can classify it as ARIMA(1,1,1) process.
&l
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Q13.

(i) A stochastic process is weakly stationary if it has constant mean and the
covariance is constant for each fixed lag.

(ii) The moving average process is X, =2Z,+ BZ, ;.
The mean of the process is E[X,] = (1 +8) p. This is constant.

The variance:
Var (X,) = Var (Z, + BZ._1)
=(1+8") 0"

The covariance
Cov (X, Xo) = Cu: (Zn + BZoet, Zoia + BZs)
Form=1, Cov (Xp, Xpm) =Cov(Z, + B2, Zoam + BZnim-1)

=0.

The covariance at higher lags are 0 since there is no overlap between the Z's.
The covariance at negative lags are the same as those at the corresponding
positive lags. Since none of these expressions depends on n, it follows that the
process is weakly stationary.

(iiiy  Write the model equation as
(1-1.5B +.5B)X =2,
where B is the back-shift operator. The polynomial in B factorizes as
(1-B)1-.58),

Since one of the roots of the polynomial has magnitude 1, the process is NOT
stationary.

(iv)  The process X is ARIMA(1,1,0), so (1-B)X is AR(1). Define the process Yas Y
= (1 = B) X, and write this AR(1) process as

(1-.58)Y=Z2.
According to standard formulae, the autocorrelation at lag 1 is 0.5.
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