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1

Insurance and investment companies are often interested in being able to compute the joint 

probability of events occurring, for example the joint probability of losses on different classes of 

business or on investments, or the joint probability of default on investments. One way of 

calculating a joint probability is to use a joint PDF (or probability function in the case of discrete 

random variables) and then to integrate (or sum) this to find the probability.

There are a number of drawbacks to this approach.

An alternative way of calculating a joint probability is to use a copula. A copula is a function that 

takes as inputs marginal CDFs and outputs a joint CDF. 

There are many distinct copula functions, each of which expresses different types and levels of 

association between the variables.
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1.1

Association

Variables are said to be associated if there is some form of statistical relationship between them – 

whether causal or not. To facilitate comparisons, measures of association can be constructed. 

Coefficients of association are generally designed so that their values vary between −1 and +1. 

Their absolute values increase with the strength of the relationship.

Any one particular type of coefficient of association measures a particular form of association. 

For example, Pearson’s correlation coefficient measures the degree to which there is a linear 

relationship between the variables. 
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1.1

Concordance

Concordance is another particular form of association. Broadly speaking, two random variables are 

concordant if small values of one are likely to be associated with small values of the other, and vice 

versa. 

Spearman’s rho and Kendall’s tau are two examples of measures of concordance. 

Desirable properties of a measure of concordance / association 

A good measure of the concordance (or association) between two variables should have a number 

of properties. 

These include invariance, which requires that the measure of concordance does not change if we 

apply the same monotone function to the value of each variable. 

Pearson’s ρ does not have this property. 
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1.1

Tail dependency

It is often the case in insurance and investment applications that large losses tend to occur 

together. Example a hurricane could result in large losses on several different property insurance 

policies sold by the same company or a stock market crash could lead to large losses on a number 

of investments in the same investment portfolio. 

So the relationships between the variables at the extremes of the distributions, ie in the upper and 

lower tails, are of particular importance. These can be measured using the coefficients of upper and 

lower tail dependence.
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1.1

Coefficient of upper tail dependence

We can define the coefficient of upper tail dependence as:

𝝀𝑼 = 𝒍𝒊𝒎
𝒖→𝟏−

𝑷 𝑿 > 𝑭𝑿 −𝟏(𝒖) ∣ 𝒀 > 𝑭𝒀
−𝟏(𝒖)

It considers the probability of the random variable X taking a value in the upper tail of its 

distribution (eg a tail with a probability mass of 5% → u = 0.95), given that the random variable Y 

takes a value in the same sized upper tail of its distribution. 

This coefficient is a probability, so it takes a value between 0 and 1. 
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1.1

Coefficient of lower tail dependence

The coefficient of lower tail dependence is defined as:

𝝀𝑳 = 𝒍𝒊𝒎
𝒖→𝟎+

𝑷 𝑿 ≤ 𝑭𝑿
−𝟏(𝒖) ∣ 𝒀 ≤ 𝑭𝒀

−𝟏(𝒖)

It considers the probability of the random variable X taking a value in the lower tail of its 

distribution (eg a tail with a probability mass of 5% → u = 0.05), given that the random variable Y 

takes a value in the same sized lower tail of its distribution.

This coefficient is a probability, so it takes a value between 0 and 1. 
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2

Expressing the association between variables explicitly 

The joint distribution combines the information from the marginal distributions and the way in 

which the variables depend on each another. However, it expresses this dependence implicitly. 

We cannot immediately see the nature of the interdependence simply by looking at the 

formula for the joint distribution function. 

Copulas provide an alternative approach that expresses the interdependence between 

the variables explicitly. 

They allow us to deconstruct the joint distribution of a set of variables into components (the 

marginal distributions plus a copula) that can be adjusted individually. 
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Definition of a copula 

A copula is a function that expresses a multivariate cumulative distribution function in terms of 

the individual marginal cumulative distributions. It is important to remember that a copula is a 

function. 

For a bivariate distribution, the copula is a function 𝐶𝑋𝑌 defined by:

𝑪𝑿𝒀 𝑭𝑿(𝒙), 𝑭𝒀(𝒚) = 𝑷(𝑿 ≤ 𝒙, 𝒀 ≤ 𝒚) = 𝑭𝑿,𝒀(𝒙, 𝒚)

This is often written in the more compact form:

𝑪[𝒖, 𝒗] = 𝑭𝑿,𝒀(𝒙, 𝒚) where 𝒖 = 𝑭𝑿(𝒙) and 𝒗 = 𝑭𝒀(𝒚)

This definition can be extended to the multivariate case where we have:

𝑐 𝑢1, 𝑢2, … , 𝑢𝑑 = 𝐹𝑋1,𝑋2,…,𝑋𝑑
𝑥1, 𝑥2, … , 𝑥𝑑  where 𝑢𝑖 = 𝐹𝑋𝑖

𝑥𝑖

Note that the arguments 𝑢1, 𝑢2, … , 𝑢𝑑 and the output value of the copula function are restricted 

to the range [0,1], as they correspond to probabilities.

2.1
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Three properties of copulas

Copulas must also satisfy three technical properties to ensure that they correctly capture the 

properties we would expect of a joint distribution in all circumstances. 

1. A copula is an increasing function of its inputs:

𝐶 𝑢1, … , 𝑢𝑖
∗, … , 𝑢𝑑 > 𝐶 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑑  for 𝑢𝑖

∗ > 𝑢𝑖 and 𝑖 = 1, … , 𝑑

2. If all the marginal CDFs are equal to 1 except for one of them, then the copula function is 

equal to the value of that one marginal CDF:

𝐶 1, … , 1, 𝑢𝑖 , 1, … , 1 = 𝑢𝑖 for 𝑖 = 1,2, … , 𝑑 and 𝑢𝑖 ∈ [0,1]

3. A copula function always returns a valid probability:

𝐶 𝑢1, 𝑢2, … , 𝑢𝑑 ∈ [0,1]

2.1
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2.2

Sklar demonstrated in 1959 that the dependence structure of a set of random variables can be 

captured using copulas. The theorem is as follows:

Sklar's theorem

Let 𝐹 be a joint (cumulative) distribution function with marginal cumulative distribution 

functions 𝐹1, … , 𝐹𝑑. Then there exists a copula, 𝐶, such that for all 𝑥1, … , 𝑥𝑑 ∈ [−∞, ∞] :

𝑭 𝒙𝟏, … , 𝒙𝒅 = 𝑪 𝑭𝟏 𝒙𝟏 , … , 𝑭𝒅 𝒙𝒅

In the case of variables that have a continuous distribution, the copula is unique.

Converse of Sklar's theorem

If 𝐶 is a copula and 𝐹1, … , 𝐹𝑑 are univariate cumulative distribution functions, then the function 

𝐹 defined above is a joint cumulative distribution function with marginal cumulative 

distribution functions 𝐹1, … , 𝐹𝑑.
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2.3

Lower tail dependence

Recall that the coefficient of lower tail dependence is defined as:

𝜆𝐿 = lim
𝑢→0+

𝑃 𝑋 ≤ 𝐹𝑋 −1(𝑢) ∣ 𝑌 ≤ 𝐹𝑌 −1(𝑢)

Coefficient of lower tail dependence in terms of the copula function

𝝀𝑳 = 𝐥𝐢𝐦
𝒖→𝟎+

𝒄[𝒖, 𝒖]

𝒖

ie the coefficient of lower tail dependence can be calculated directly from the copula 

function.

The coefficient of lower tail dependence can take values between 0 (no dependence) and 1 

(full dependence). 
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2.3

The survival copula

To define the upper tail dependence, we need to look at the opposite end of the marginal 

distributions. Associated with each copula function is a survival copula function (indicated with a 

bar), which is defined by: 

᪄𝐹(𝑥, 𝑦) = 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) = ᪄𝐶 ᪄𝐹𝑋(𝑥), ᪄𝐹𝑌(𝑦)

where ᪄𝐹𝑋(𝑥) = 1 − 𝐹𝑋(𝑥) and ᪄𝐹𝑌(𝑦) = 1 − 𝐹𝑌(𝑦).

Contd.
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2.3

The survival copula

By the principle of inclusion / exclusion, we have:

𝑃(𝑋 ≤ 𝑥 and/or 𝑌 ≤ 𝑦) = 𝑃(𝑋 ≤ 𝑥) + 𝑃(𝑌 ≤ 𝑦) − 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)

 ie 1 − 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) = 𝑃(𝑋 ≤ 𝑥) + 𝑃(𝑌 ≤ 𝑦) − 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)
⇒ 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) = 1 − 𝑃(𝑋 ≤ 𝑥) − 𝑃(𝑌 ≤ 𝑦) + 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)

So, the survival copula is related to the original copula function by:

᪄𝑪[𝟏 − 𝒖, 𝟏 − 𝒗] = 𝟏 − 𝒖 − 𝒗 + 𝑪[𝒖, 𝒗]
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2.3

Upper tail dependence

Coefficient of upper tail dependence in terms of the survival copula function

We can then define the coefficient of upper tail dependence as:

𝜆𝑈 = lim
𝑢→1−

𝑃 𝑋 > 𝐹𝑋
−1(𝑢) ∣ 𝑌 > 𝐹𝑌

−1(𝑢) = lim
𝑢→0+

᪄𝑐[𝑢, 𝑢]

𝑢

Coefficient of upper tail dependence in terms of the copula function

𝝀𝑼 = 𝐥𝐢𝐦
𝒖→𝟏−

𝟏 − 𝟐𝒖 + 𝑪[𝒖, 𝒖]

𝟏 − 𝒖
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3

There are three main families of copula that we will go on to consider in the 

subsequent sections of this chapter: 

(i) fundamental copulas 

(ii) explicit copulas.

(iii) implicit copulas. 
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3.1

Fundamental copulas represent the three basic (or fundamental) dependencies that 

a set of variables can display, namely: 

• independence 

• perfect positive interdependence, and 

• perfect negative interdependence. 

These copulas are referred to as the: 

• independence (or product) copula 

• co-monotonic (or minimum) copula 

• counter-monotonic (or maximum) copula. 

Collectively these three copulas are referred to as fundamental copulas. 
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3.1

Independence (or product) copula 

One example of a bivariate copula is the product copula 𝐶[𝑢, 𝑣] = 𝑢𝑣. 

Here we have:

𝑭𝑿,𝒀(𝒙, 𝒚) = 𝑪 𝑭𝑿(𝒙), 𝑭𝒀(𝒚) = 𝑭𝑿(𝒙)𝑭𝒀(𝒚)
.

 or: 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝑃(𝑋 ≤ 𝑥)𝑃(𝑌 ≤ 𝑦)

This captures the property of independence of the two variables 𝑋 and 𝑌, and so is 

also called the independence (or product) copula.
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3.1

Co-monotonic (or minimum) copula 

This copula is used where random variable demonstrate perfect positive 

interdependence. 

The co-monotonic copula is defined in the bivariate case as: 

C[u, v] = min(u, v)

Here we have:

𝑪 𝑭𝑿(𝒙), 𝑭𝒀(𝒚) = 𝐦𝐢𝐧 𝑭𝑿(𝒙), 𝑭𝒀(𝒚)

or: 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = min(𝑃(𝑋 ≤ 𝑥), 𝑃(𝑌 ≤ 𝑦))
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3.1

Counter-monotonic (or maximum) copula

The co-monotonic copula captures the relationship between two variables whose 

values are perfectly positively interdependent on each other, while the counter-

monotonic copula captures the corresponding inverse relationship.

The counter-monotonic copula is defined in the bivariate case as:

𝒄[𝒖, 𝒗] = 𝐦𝐚𝐱(𝒖 + 𝒗 − 𝟏, 𝟎)

Here we have:

𝑪 𝑭𝑿(𝒙), 𝑭𝒀(𝒚) = 𝐦𝐚𝐱 𝑭𝑿(𝒙) + 𝑭𝒀(𝒚) − 𝟏, 𝟎

or:

𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = max(𝑃(𝑋 ≤ 𝑥) + 𝑃(𝑌 ≤ 𝑦) − 1,0)



Fundamental Copulas

22

3.1

The multivariate case 

The independence and co-monotonic copulas can be extended in the obvious way to the 

multivariate case. However, the counter-monotonic copula cannot. This is because it is not 

possible to have three or more variables where each pair has a direct inverse relationship. 

In the multivariate case, we can extend the independence and co-monotonic copulas to 𝑑 

dimensions as follows:

𝑖𝑛𝑑 𝐶 𝐹𝑋1
𝑥1 , … , 𝐹𝑋𝑑

𝑥𝑑 = 𝐹𝑋1
𝑥1 × ⋯ × 𝐹𝑋𝑑

𝑥𝑑

 min𝐶 𝐹𝑋1
𝑥1 , … , 𝐹𝑋𝑑

𝑥𝑑 = min 𝐹𝑋1
𝑥1 , … , 𝐹𝑋𝑑

𝑥𝑑

However, it is impossible to have three or more variables, eg 𝑥1, 𝑥2 and 𝑥3, each of which 

always move in the opposite direction to all of the others. This is why the counter-

monotonicity copula is only defined in two dimensions.
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3.2

Bivariate copulas can be represented graphically in various ways: 

• scatterplots 

• 3D (perspective) representations, and corresponding contour plots.

Scatterplots - The relationships implied by a copula can be illustrated using a 

scatterplot of simulated values of u and v .

3D representations and contour diagrams - The relationships described by 

copula functions, illustrated by the scatterplots (above), can also be represented in 

3 dimensions: u , v and C[u, v].
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3.2

Scatterplots - Example 
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3.2

3D representations and contour diagrams - Example 
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3.3

Explicit copulas have simple closed-form expressions. An important subclass is that of 

Archimedean copulas. 

Several copulas can be specified by a special form of generator function that automatically 

captures the properties required for a copula. These are called Archimedean copulas. 

Archimedean copulas are described by reference to a generator function. In the bivariate case, 

they take the form:

𝑪[𝒖, 𝒗] = 𝝍[−𝟏](𝝍(𝒖) + 𝝍(𝒗))

where 𝜓(𝑥) is the generator function, and 𝜓[−1] is the pseudo-inverse function (explained 

below).

Three examples of Archimedean copulas are: the Gumbel, Clayton and Frank copulas.
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3.3

The Gumbel Copula

The Gumbel copula is defined in the bivariate case as:

𝒄[𝒖, 𝒗] = 𝐞𝐱𝐩 − (−𝐥𝐧 𝒖)𝜶 + (−𝐥𝐧 𝒗)𝜶 𝟏/𝜶

Note that the Gumbel copula is often referred to as the Gumbel-Hougaard copula.

The Gumbel copula can be defined by the generator function:

𝝍(𝒕) = (−𝐥𝐧 𝒕)𝜶 where 𝟏 ≤ 𝜶 < ∞

which we can use to deduce an explicit formula for the copula function.

The Gumbel copula describes an interdependence structure in which there is upper tail 

dependence (the level of which is determined by the parameter α), but there is no lower 

tail dependence. 
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The Gumbel Copula – Tail dependency

For the Gumbel copula setting 𝑢 = 𝑣 gives:

𝑐[𝑢, 𝑢]  = exp − (−ln 𝑢)𝛼 + (−ln 𝑢)𝛼 1/𝛼

 = exp − 2(−ln 𝑢)𝛼 1/𝛼

 = exp − 21/𝛼(−ln 𝑢)

ቅ= exp 21/𝛼ln 𝑢

 = exp ln 𝑢21/𝛼

 = 𝑢21/𝛼

The coefficient of upper tail dependence is given by:

𝜆𝑈 = lim
𝑢→1−

1 − 2𝑢 + 𝐶[𝑢, 𝑢]

1 − 𝑢
= lim

𝑢→1−

1 − 2𝑢 + 𝑢21/𝛼

1 − 𝑢

3.3
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The Gumbel Copula – Tail dependency

In the limit this fraction has the form 
0

0
, which is undefined. However, we can use 

L'Hôpital's rule, lim𝑥→𝑎
𝑓(𝑥)

𝑔(𝑥)
= lim𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
, to find the value of the limit:

𝜆𝑈 = lim
𝑢→1−

1 − 2𝑢 + 𝑢21/𝛼

1 − 𝑢
= lim

𝑢→1−

−2 + 21/𝛼𝑢21/𝛼−1

−1
= 2 − 21/𝛼

As 𝛼 increases, 21/𝛼 reduces and hence 2 − 21/𝛼 increases. So, increasing the value of the 

parameter 𝛼 increases the degree of upper tail dependence of the Gumbel copula.

3.3
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The Clayton Copula

The Clayton copula is defined in the bivariate case as:

𝒄[𝒖, 𝒗] = 𝒖−𝜶 + 𝒗−𝜶 − 𝟏 −𝟏/𝜶

The Clayton copula describes an interdependence structure in which there is lower tail 

dependence (the level of which is determined by the parameter 𝛼 ), but there is no upper 

tail dependence.

The Clayton copula is defined by the generator:

𝝍(𝒕) =
𝟏

𝜶
𝒕−𝜶 − 𝟏  where − 𝟏 ≤ 𝜶 < ∞

3.3
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The Frank Copula

The Frank copula is defined in the bivariate case as:

𝒄[𝒖, 𝒗] = −
𝟏

𝜶
𝐥𝐧 𝟏 +

𝒆−𝜶𝒖 − 𝟏 𝒆−𝜶𝒗 − 𝟏

𝒆−𝜶 − 𝟏

The Frank copula describes an interdependence structure in which there is no upper or 

lower tail dependence.

The Frank copula is defined by the generator:

𝝍(𝒕) = −𝐥𝐧
𝒆−𝜶𝒕 − 𝟏

𝒆−𝜶 − 𝟏
 where − ∞ < 𝜶 < ∞

3.3
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Independence (or product) copula

The independence (or product) copula is also Archimedean. 

Its generator is 𝝍(𝒕) = −𝐥𝐧 𝒕.

3.3
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The final group of copulas that we consider are called implicit copulas. These copulas are 

based on (or implied by) well-known multivariate distributions, but no simple closed-

form expression exists for them. 

We look at: 

• the Gaussian copula (based on the multivariate normal distribution) 

• the Student’s t copula (based on the multivariate Student’s t distribution).

3.4
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The Gaussian Copulas

The bivariate Gaussian copula is defined by:

𝑪[𝒖, 𝒗] = 𝜱𝝆 𝜱−𝟏(𝒖), 𝜱−𝟏(𝒗)

where Φ is the distribution function of the standard normal distribution and Φ𝜌 is the 

distribution function of a bivariate normal distribution with correlation 𝜌.

Applying this Gaussian copula to normal marginal distributions will result in a bivariate 

normal distribution with correlation 𝜌.

The formula defining the bivariate Gaussian copula is mathematically equivalent to the 

following integral form:

𝐶[𝑢, 𝑣] = න
0

𝑢

Φ
Φ−1(𝑣) − 𝜌Φ−1(𝑡)

1 − 𝜌2
𝑑𝑡

3.4
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The Student’s t copula 

The Student's 𝑡 copula is defined by:

𝒄[𝒖, 𝒗] = 𝒕𝜸,𝝆 𝒕𝜸
−𝟏(𝒖), 𝒕𝜸

−𝟏(𝒗)

where 𝑡𝛾 is the distribution function of a random variable with a Student's 𝑡 distribution 

with 𝛾 degrees of freedom and 𝑡𝛾,𝜌 is the distribution function of a bivariate Student's 𝑡 

distribution with correlation 𝜌.

3.4
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4

Choosing a suitable copula function If we want to create a mathematical model to 

represent real-world phenomena then we might look at past data and: 

• select and parameterise marginal distributions for each of the relevant variables, and

• describe and quantify the form and extent of the associations between the variables. 

Examination of the form and levels of association between the variables of interest allows 

us to select a suitable candidate copula from the list of established copulas or to develop 

a new bespoke copula.

Different copulas result in different levels of tail dependence.
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4.1
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4.1

The degree of concordance and the level of tail dependencies exhibited by a 

particular set of data helps to indicate which copula(s) might be appropriate to 

consider using. 
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CS2A S2022 Q7

An insurer writes three different classes of insurance business: X, Y and Z. The classes have 

the following total annual claims distributions: 

X ~ Exp(0.08) 

Y ~ Normal(10, 22 ) 

Z ~ Normal(20, 32 ) 

The insurer models the level of dependency between the classes’ total claim amounts using a 

Clayton (α = 2) copula. 

(i) Calculate the probability, using the Clayton (2) copula, that both X < 3 and Y < 8. [3] 

(ii) Calculate the probability, using the Clayton (2) copula, that all of the following occur: 

X < 3, Y < 8 and Z < 20. [3] 
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(iii) Calculate the probability, using the Clayton (2) copula, that both X > 10 and Y > 12. [3] 

A student has noted that copulas are a useful modelling tool as ‘they allow us to model 

different degrees of dependency’. 

(iv) Comment on this statement. [3] 

[Total 12] 
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