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Archimedean
Copulas

General definition of Archimedean copulas

Copulas in the Archimedean family are of the form:
(s
C[U1,...,Ud:|=l// ZV/(U,)
i=1

In order to be valid, the generator function y : [0, 1] —> [0,oo] must be a continuous, strictly

decreasing, convex function with l//(1) =0.
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Introductio
n

‘H Aim — To be able to study joint probabilities
Joint Probabilities of Events

Example 1. Default on multiple types of loans
2. Loss on 2 different types of insurance policies

Example Home — Xy
Motor - Xy

By 0 B2) =1

» There is interdependency and loans default and losses in insurance.



Introduction
Contd

Problem with Joint Probabilities

» Joint pdf's make it hard to model the nature of relationship between two variables
And hence as an alternative we use Copulas

» Copulas
It's a function that takes marginal cdf's as input & gives joint cdf as output

Marginal PDF's - Copulas —» Joint CDF
Copulas — function of marginal cdf's

CIE(x), By ()] = Fry(xy)
based on relationship between two variables



Marginal & Joint
distributions

Joint cdf:

Deriving the joint CDF by integrating the joint PDF :

Computing the marginal PDF from a joint PDF by integrating out the other variable:

Computing a marginal CDF by integrating the marginal PDF:




Marginal & Joint
distributions

The joint PDF for two continuous random variables X and Y is:

fry (x,y)=2(x+4y), 0<x<2,0<y<2
(i) Derive a formula for the joint CDF, Fy y (x,y) :

(ii) Derive formulae for the marginal PDFs, fy (x) and fy (y),and comment on whether X

and Y are independent.

(i)  Derive formulae for the marginal CDFs, Fy (x) and F, (y).



Terminology of associations

Types of associations:

- Pearson’s linear correlation coefficient

- Rank correlation coefficients

- Tail dependence

Coefficient of upper tail dependence -

Coefficient of lower tail dependence -
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Definition of
Copulas

A copula is a function that expresses a multivariate cumulative distribution function in terms of
the individual marginal cumulative distributions.

For a bivariate distribution, the copula is a function Cy, defined by:

Cxy |[Fx (x),Fy (¥)]|=P(X <x,Y <y)=Fxy(x,y)
This is often written in the more compact form:
Clu,v]=Fxy(x,y) where u=Fx(x) and v=F/,(y)
This definition can be extended to the multivariate case where we have:

C[U1,U2,...,Ud] = Fx1,x2,_",xd (X1,X2,...,Xd) where u; = in (X,)
11



Properties of
Copulas

» C(uq,ug,uz...uj, .. ug) >C(ug, ug, ..., u; ...) ifuy >uy;
Copulas is an increasing fn of inputs

» C(1,1,1,u,1,1) =u

» C(uq,uz,uz..u) €(0,1)
copulas always returns a valid probability

12



5 Sklar’s
" Theorem

‘H - Whenever you have a joint distribution and corresponding marginal distribution you can
always express joint CDF as a function of marginal cdf's using a copula

0 Fora given joint distribution and corresponding marginal distribution , there exists a
unique copula which links them & vice versa

13



Sklar’s
Theorem

5.

The joint probability density function for two continuous random variables X and Y is:

fxy (x,y)=2(x+4y), 0<x<2,0<y<2

(i) Derive formulae for the inverse cumulative distribution functions F)'('l(u) and I-'y_1 (v).

(ii) Hence derive a formula for the copula function C(u,v)=Fyy(x,y).
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Coefficient of Talil
Dependance



5. Survival Formula
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Coefficient of Upper Tail
Dependancy

6.

Ay =limy,_ PX > F7 () Y = BN (w)
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Product
Copulas
X andY are independent of each other
C(uv) = u*v
A, = lim &% = im ¥% =
pu—0t u u—0t u

No Correlation
No Lower Tail Dependency 2u

1-2u+C(uu) _ 1-2u+u?

AU = lim
u-1 1= 1-u
=lim1—u
U1
=0

No upper tail dependency



/

Product
" Copulas

Scatterplot — Product (Independence) copula
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[.2

Co Monotonic
Copulas

X and Y have perfect positive interdependence

C(u,v) = min(u,v)
C(F(x), B, (»)) = min (F,(x), F, (%))

Ex- Y =X+0.01
PX<xY<y)=PX<x,X+001<y)
=PX<x,X<y-001)
= P(X < min(x,y —0.01)
=min(P(X <x),P(X<y-—0.01)
=min(P(X <x),P(Y <y)

; cC(uu
AL = 11 ( ) = O
u—0 u
. 1-2u+min(u,v 1-u
Ay = li e 178 _q
u—1 1-u 1-u
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Co Monotonic
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Co Monotonic
Copulas

Scatterplot — Co-monotonic copula
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Counter Monotonic (Maxima)
Copulas

7.3

X and Y have perfect negative interdependence
C(u,v) = max(u+v-1,0)
C(F,(x), F,(¥)) = max(F,(x) + E,(y) — 1,0)

» PX<x,Y<y)

=PX<x,-X<y)
PX<x,X>7v)
P(—y<X<x)
PX<x)—PX <-y)
=PX<x)—PY >y)
=PX<x)+P(Y<y)-1
Hence Proved

23



Counter Monotonic (Maxima)
Copulas

7.3
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7.3

Counter Monotonic (Maxima)
Copulas

Scatterplot — Counter-monotonic copula
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3.1

Gumbel
Copulas

The Gumbel copula is defined in the bivariate case as:

Clu,v]=exp {—((—Inu)a + (cInv)? )1/a}

- Gumbel copula describes an interdependence structure in which there is
upper tail dependence (the level of which is determined by the parameter
a), but there is no lower tail dependence.
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Clayton
Copulas

3,2

The Clayton copula is defined in the bivariate case as:

Clu,v]= (u'“ +v % - 1)_1/a

- Clayton copula describes an interdependence structure in which there is
lower tail dependence (the level of which is determined by the parameter
a), but there is no upper tail dependence.
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Frank
Copulas

3.3

The Frank copula is defined in the bivariate case as:

C[u,v] = —1In 1+ (e—au —1)(e‘“v _ 1)

AR

- The Frank copula describes an interdependence structure in which there
is no upper or lower tail dependence.
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Archimedean
Copulas

3.4

Archimedean copulas are described by reference to a generator function. In the bivariate case,
they take the form:

cluv]=y () +y (v))

Y(x) is a strictly decreasing, continuous function of x and y!t'l(x) is the pseudo-inverse function

Archimedean copulas are a subset of explicit copulas

32



Archimedean
Copulas

3.4

Pseudo-inverse functions

-1 .
ST = {y/ (x) if 0<x<y(0)
0 if y(0)<x<oo

where y/‘1 (x) denotes the ordinary inverse function obtained by inverting the equation
x =y(y) to express y interms of x.

33



Archimedean
Copulas

3.4

Intuition behind Archimedean copulas

Using the definition, we can understand that we are:

® taking probabilities between 0 and 1 (the u;'s or marginal CDFs)

® converting these to numbers greater than 0 using the generator function
® summing the results

® converting the result back to a probability (ie the joint CDF) using the inverse

function y 1.

34



Archimedean
Copulas

3.4

Q For the following generator functions, determine the Archimedean copula and identify
the resulting copula

w(t)=(-Int)* where 1<a <o

y(f) = —Int

35



Archimedean
Copulas

3.4

Q Southwest Re is a start-up reinsurance company that is assessing its
economic capital using a Value at Risk approach calibrated to the 95th
percentile loss over one year. During its first year, Southwest Re underwrote

four excess of loss reinsurance treaties with the following features:

Probability of no loss occurring

Excess (ie below excess)
Cornwall Insurance £50m 0.995
Devon Insurance £50m 0.985
Somerset Insurance | £50m 0.975
Dorset Insurance £50m 0.965

Claims on the reinsurance treaties are assumed to be linked by a Gumbel

copula with parameter ¢ =2.5.

36



Archimedean
Copulas

3.4

Continued

The generator function for a Gumbel copula with parameter « is:

cuVe (F())= [-In(F(x))]*

The Chief Capital Officer has suggested that, because the probability of no
losses occurring on the four reinsurance treaties is greater than 95%, the
reinsurer does not need to hold any economic capital.

Verify the Chief Capital Officer's claim that the probability of no losses
occurring on the four reinsurance treaties is greater than 95%. [4]
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3.4

Q

Archimedean
Copulas

An investment company is analysing the likelihood of two corporate bonds

defaulting and is trying to decide which copula to use to model their
dependence structure.

Bond A has a probability of default in the following year of 0.05.

Bond B has a probability of default in the following year of 0.15.

38



Archimedean
Copulas

3.4

Continued

You are given the following generator functions:

Gumbel copula: g, ¥, (F(x)) = (=In(F(x)))*

Clayton copula: ¥, (F(x)) = %(F(x)‘“ —1)

(i) Calculate the probability of both bonds defaulting in the following year
using:
(a) a Gumbel copula with parameter o = 2

(b) a Clayton copula with parameter o = 2. [4]

(i) Explain which copula would be more appropriate. [2]
[Total 6]
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9.1 Gaussian Copulas



9.2 Students T Copulas



10. Choosing and fitting a suitable copula function

Examination of the form and levels of association between the variables of interest allows
us to select a suitable candidate copula from the list of established copulas or to develop a
new bespoke copula.

Different copulas result in different levels of tail dependence.

42



Choosing and fitting a suitable copula
function

We can summarise the upper and lower tail dependence results in the table below:

Copula name LA A
Independence 0
Co-monotonic 1
Counter-monotonic 0
Gumbel 0 2 _ple
—— 27V it 650 ;
0 if a<0
Frank 0
0if p<1
Gaussian 1if p=1
>0 if y <o, increasing as y decreases
Student’s t 0if y =c0and p#1
1 for all y when p=1
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Choosing and fitting a suitable copula
function

Question

State an appropriate copula to use if the data exhibit the following features:

(a) independence

(b) high upper tail dependence, but no lower tail dependence
(c) a high degree of positive interdependence throughout

(d) high lower tail dependence, but no upper tail dependence
(e) a high degree of negative interdependence throughout

(f) no upper or lower tail dependence

(g) both upper and lower tail dependence.
44



Calculating probabilities using
copulas

Question

Let X =a person’s height measured in cm, and Y = weight measured in kg. Heights and weights
are each assumed to be normally distributed, and:

P(X <180)=0.81594 and P(Y <70)=0.69146

(i) Calculate the joint probability that a person’s height is less than or equal to 180cm and
that their weight is less than or equal to 70kg using:

(a) the independence (or product) copula

(b) the Gaussian copula with p =0 .

The following table is required for (i)(a). It shows an excerpt of values from the bivariate standard
normal cumulative distribution function: @ ,_ (x,y).
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