Lecture 1

Class: TY Bsc

Subject: Statistical Techniques and Risk Management 4

Subject Code: PUSASQF605A

Chapter: Unit 2

Chapter Name: Extreme Value Theory

Chapter Agenda

- 1. Introduction to Extreme Events
 - 1. Heteroscedasticity
 - 2. Block Maxima
 - 3. Peak Over Threshold
- 2. General Extreme Value Distribution
- 3. General Pareto Distribution
- 4. Measure of Tail Weights

1. Introduction to Extreme Events

Extreme Events

Events that have a low probability of occurring and a high financial impact i.e. low frequency and high severity.

Example:

- > A loss due to natural calamity; stock market crash.
- > A large amount of claims come together
- As we extrapolate extreme value probabilities from our median data we end up understating them.

1. Introduction to Extreme Events

Extreme Events

- Problems with modelling extreme events
- No data / very less data for extreme events.
- Non normality of financial returns or losses as these event distributions have fatter tails and sharper peaks
- 3. Probability of extreme events is underestimated as normal distribution has narrow tails.

1. Introduction to Extreme Events

Extreme Events

Kurtosis

K = 3 is mesokurtic distribution [Normal Distribution]

K > 3 is leptokurtic distribution [Sharper Peak]

K < 3 is platykurtic distribution [Flatter Peak]

1.1 Heteroscedasticity

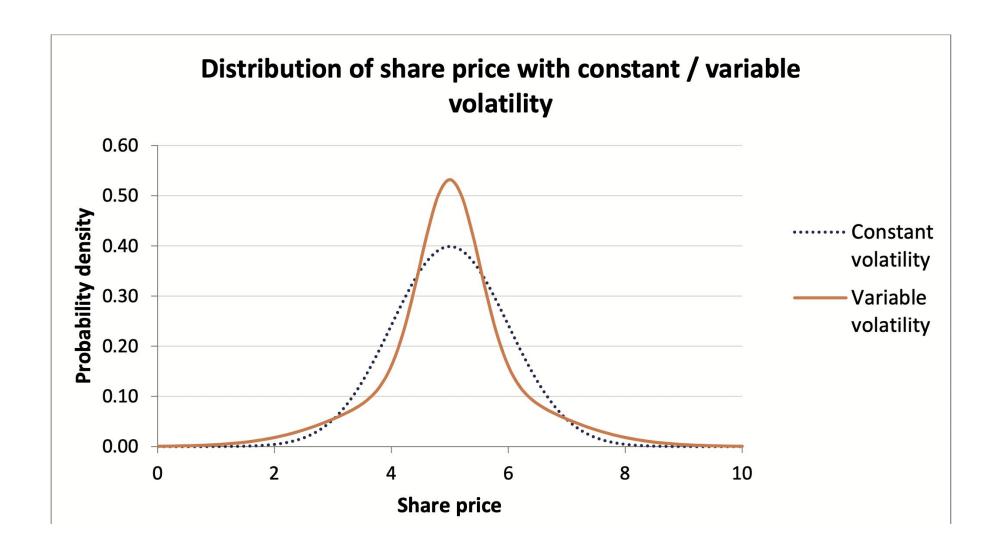
Asset Return Volatility is not a constant (clustering volatility) but it changes stochastically with time

- Heteroscedastic pdf has a fatter tail than pdf with constant volatility

The graph below compares two distributions for the price of a share in one year's time:

- a $N(5, \sigma^2)$ distribution with constant volatility, $\sigma = 1$
- a $N(5, \sigma^2)$ distribution where the volatility is heteroscedastic, ie $\sigma = 0.5$ and $\sigma = 1.5$ with equal probability.

1.1 Heteroscedasticity



1.1 Heteroscedasticity

Extreme Values

Block Maxima

Divide the data into blocks and select the highest value from each block.

Peak Over Threshold Exceedances

Model the data above a threshold level

The dataset below shows the claim amounts in £000s in respect of a commercial property portfolio over a period of a year.

Claim	Claim
number	amount
1	9
2	28
3	20
4	8
5	102
6 □	152
7	23
8	108
9	42
10	12
11	110
12	9
13	22
14	37
15	147
16	128

Claim	Claim
number	amount
17	12
18	35
19	12
20	75
21	80
22	42
23	9
24	122
25	145
26	13
27	16
28	113
29	9
30	8
31	12
32	84

Claim	Claim
number	amount
33	19
34	17
35	66
36	55
37	81
38	140
39	64
40	9
41	9
42	36
43	185
44	135
45	25
46	16
47	55
48	31

Claim	Claim
number	amount
49	118
50	55
51	14
52	94
53	54
54	81
55	62
56	83
57	23
58	19
59	55
60	104

- (i) Determine the values of X_M where the block size is:
 - (a) n = 5
 - (b) n = 10
- (ii) Comment on the trade-off between the block size and the values of X_M that will be used to fit the extreme value distribution.

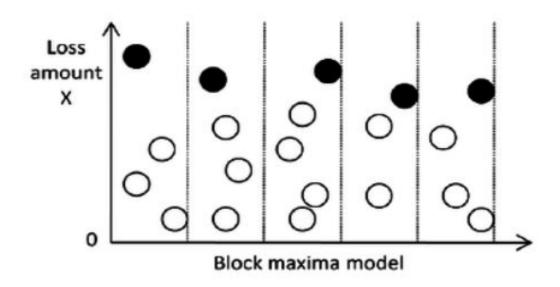
 X_m = max value of X in a block

m = no of blocks

n = no of values in a block

 $X_m = \max(X_1, X_2, \dots, X_n)$

 X_m is the block maxima



Generalized Extreme Value Distributions (GEV)

Whatever the underlying distribution of data the distribution of the standardized maximum values will converge to a distribution called General Extreme Value Distribution.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \rightarrow \frac{\bar{X} - \mu}{\sqrt{n}} \sim N(0, 1)$$

$$X_m = \max(X_1, X_2 \dots X_n) \rightarrow \text{Block Maxima}$$

Model

$$\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$
 [standardised]

for extreme values

$$\frac{X_m - \alpha_n}{\beta_n} \to Modelling Upper Tail$$

CDF of X_m

$$X \sim \text{Exp}(\lambda)$$

$$\alpha_n = \frac{1}{\lambda} \ln n$$

$$\beta_n = \frac{1}{\lambda}$$

$$\lim_{n \to \infty} P\left(\frac{X_m - \alpha_n}{\beta_n} \le X\right)$$

$$\lim_{n \to \infty} P(X_m \le X * \beta_n + \alpha_n)$$

GEV distribution

GEV
$$\rightarrow \alpha$$
 (location parameter) \rightarrow mean β (scale parameter) \rightarrow variance γ (shape parameter) \rightarrow skewness

CDF of GEV distribution:

$$H(x) = \begin{cases} \exp\left(-\left(1 + \frac{\gamma(x - \alpha)}{\beta}\right)^{-\frac{1}{\gamma}}\right) & \gamma \neq 0 \\ \exp\left(-\exp\left(-\frac{(x - \alpha)}{\beta}\right)\right) & \gamma = 0 \end{cases}$$

Gumbel Type GEV

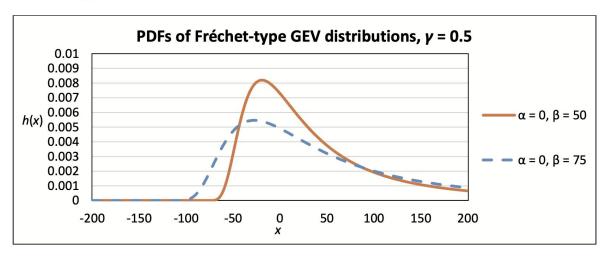
Based on γ , there are 3 types of GEV Distribution

- 1. $\gamma = 0 \rightarrow Gumbel Type Distribution$
- 2. $\gamma > 0 \rightarrow Fretchet GEV$
- 3. $\gamma < 0 \rightarrow Weibull GEV$

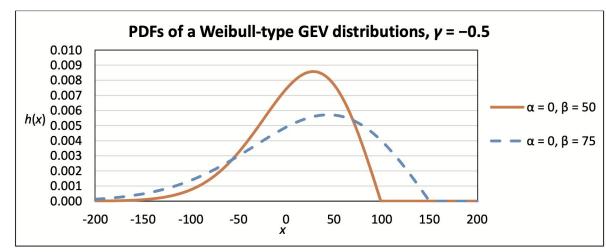
PDF of GEV distribution:

PDF of GEV distribution:

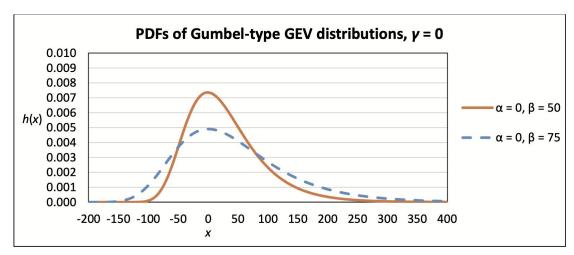
Fréchet-type GEV distributions



Weibull-type GEV distribution



Gumbel-type GEV distributions



- $\gamma > 0 \rightarrow Fretchet$
- ➤ Highly+vely skewed
- \rightarrow heavy tailed

Used for modelling extreme financial event lower bound X> $\left(\alpha - \frac{\beta}{\gamma}\right)$

$$\gamma < 0$$

- ➤ Highly -vely skewed
- Finite upper limit = upper bound $X < \alpha \frac{\beta}{\gamma}$

$$\gamma = 0$$

- > mildly +ve skewed
- > no bounds

Choosing form of GEV distribution:

	GEV distributions (for the maximum value) corresponding to common loss distributions		
Туре	WEIBULL	GUMBEL	FRÉCHET
Shape parameter	γ < 0	$\gamma = 0$	γ > 0
Underlying	Beta	Chi-square	Burr
distribution	Uniform	Exponential	F
	Triangular	Gamma	Log-gamma*
		Lognormal	Pareto
		Normal	t
		Weibull	
Range of values permitted	$x < \alpha - \frac{\beta}{\gamma}$	$-\infty < X < \infty$	$x > \alpha - \frac{\beta}{\gamma}$

The claim amounts in a general insurance portfolio are independent and follow an exponential distribution with mean £2,500.

- (i) Calculate the probability that an individual claim will exceed £10,000.
- (ii) Calculate the probability that, in a sample of 100 claims, the largest claim will exceed £10,000 using:
 - (a) an exact method
 - (b) an approximation based on a Gumbel-type GEV distribution. [5]

You are given that, for an exponential distribution with parameter λ , the approximate distribution of max $\{X_1, ..., X_n\}$ for large n is a Gumbel-type GEV distribution with CDF:

$$H(x) = \exp\left(-\left(\frac{x - \alpha_n}{\beta_n}\right)\right) \text{ where } \alpha_n = \frac{1}{\lambda} \ln n \text{ and } \beta_n = \frac{1}{\lambda}$$

(iii) State the two key assumptions made in (ii)(a).

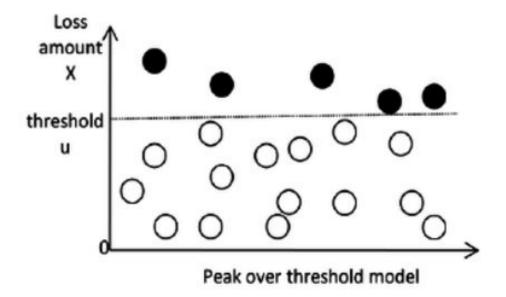
[1]

[1]

3 Peak Over Threshold Exceedances

Generalized Pareto Distribution

☐ Whatever the underlying distribution the distribution of the threshold exceedances will converge on the distribution called Generalized Pareto Distribution.



Threshold Exceedances

$$X - u/X > u$$
 $u \rightarrow threshold$

The higher the value of the threshold, the more extreme values of X. However using a higher threshold means that we have fewer values with which to fit the extreme value distribution.

CDF of X - u/X > u

CDF of X - u/X > u

The dataset below shows the claim amounts in £000s in respect of a commercial property portfolio over a period of a year. (This is the dataset from the question in Section 2.1.)

Claim	Claim
number	amount
1	9
2	28
3	20
4	8
5	102
6	152
7	23
8	108
9	42
10	12
11	110
12	9
13	22
14	37
15	147
16	128

Claim	Claim
number	amount
17	12
18	35
19	12
20	75
21	80
22	42
23	9
24	122
25	145
26	13
27	16
28	113
29	9
30	8
31	12
32	84

amount 19
19
17
66
55
81
140
64
9
9
36
185
135
25
16
55
31

Claim	Claim
number	amount
49	118
50	55
51	14
52	94
53	54
54	81
55	62
56	83
57	23
58	19
59	55
60	104

- (i) Calculate the values of $X u \mid X > u$ when:
 - (a) u = 100
 - (b) u = 125

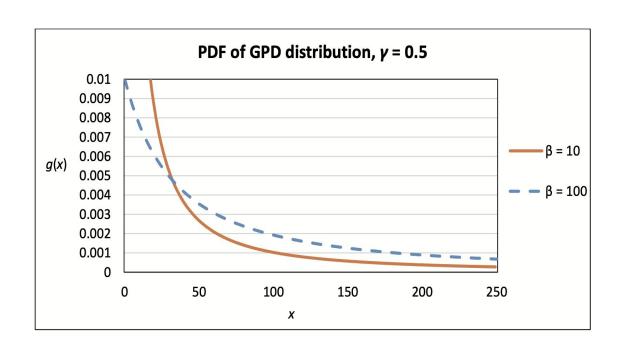
With reference to the question above, use the method of maximum likelihood to fit a distribution to the threshold exceedances when the underlying claims distribution is exponential and the threshold is chosen to be 100.

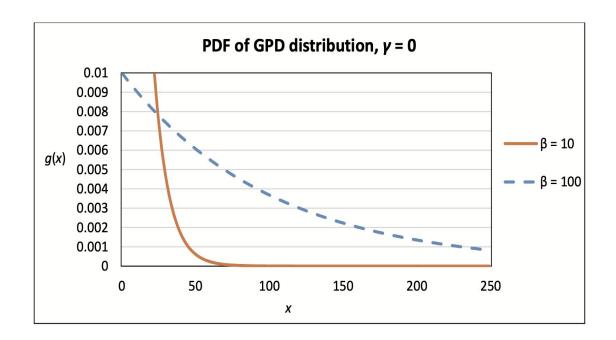
More generally,

The generalised Pareto distribution is a two-parameter distribution with CDF:

$$G(x) = \begin{cases} 1 - \left(1 + \frac{x}{\gamma \beta}\right)^{-\gamma} & \gamma \neq 0 \\ 1 - \exp\left(-\frac{x}{\beta}\right) & \gamma = 0 \end{cases}$$

PDF of the GPD distribution:





Key Advantage of the GPD

The General Pareto Distribution has the advantage that is uses a larger part of the data and models all the large claims above the threshold, not just single higher value.

> Existence of Moments (raw and central)

If more number of non central moments exist than that distribution has a lighter tail

```
Eg Pareto (\alpha, \lambda) \to moment\ exist\ if\ K < \alpha
E(X^K) = \sum X^k P(x)
higher \alpha \to more\ moments \to lighter\ tail
lower \alpha \to less\ moments \to fat\ tails
Eg Ga(\alpha, \beta)
```


➤ Limiting Density Ratio

$$\lim_{x \to \infty} \frac{f_{x_1}(x)}{f_{x_2}(x)} = \infty \to \text{numerator has heavier tail}$$
$$= 0 \to \text{denominator has a heavier tail}$$

Compare it for a Pareto distribution with α = 2 and α = 3 with the same λ

Consider the Gamma(0.5, 0.005) and Pa(4, 300) distributions, both of which have a mean of 100 and a variance of 20,000.

Use the 'limiting density ratio' method to compare these two distributions.

- > Hazard Rate
- Example for mortality-

$$f(t) = tP_x * \mu_{x+t}$$

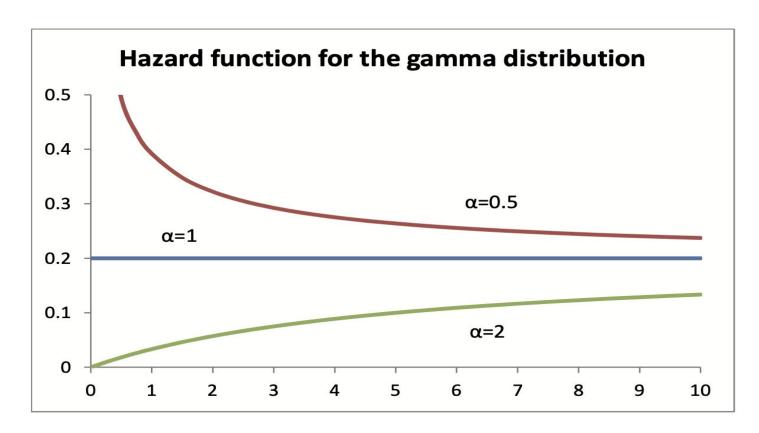
$$F(t) = tq_x \qquad \mu_{x+t} = \frac{f(t)}{1 - F(t)}$$

$$h(x) = \frac{f(x)}{1 - F(x)}$$

- Hazard is an increasing function of x
 Tail will be lighter as less people reach higher ages
- 2. Hazard is a decreasing function of x Heavier Tail as more people reach higher ages

- (i) Determine the hazard rate for:
 - (a) the $Exp(\lambda)$ distribution
 - (b) the $Pa(\alpha, \lambda)$ distribution.
- (ii) Comment on the differences between these hazard rates.

For a Gamma distribution with same λ



> Mean Residual Time

$$e(x) = \frac{\int_{x}^{\infty} (1 - F_{y}(Y).dy)}{1 - F(x)}$$

If MRT is an increasing function of x; fatter tail If MRT is a decreasing function of x; lighter tail

- (i) Determine the mean residual life for:
 - (a) the $Exp(\lambda)$ distribution
 - (b) the $Pa(\alpha, \lambda)$ distribution where $\alpha > 1$.
- (ii) Comment on the behaviour of these functions.

- (i) Determine the mean residual life for:
 - (a) the $Exp(\lambda)$ distribution
 - (b) the $Pa(\alpha, \lambda)$ distribution where $\alpha > 1$.
- (ii) Comment on the behaviour of these functions.

(i) Show that:

$$\int_{x}^{\infty} e^{-3y^{\frac{1}{2}}} dy = \frac{2}{9} P\left(\chi_{4}^{2} > 6x^{\frac{1}{2}}\right)$$
 [5]

Hint: use the substitution $u = 3y^{\frac{1}{2}}$ and transform the integrand into the PDF of the Gamma(2,1) distribution.

- (ii) Hence deduce an expression involving a chi-squared probability for the mean residual life for the $W\left(3,\frac{1}{2}\right)$ distribution. [2]
- (iii) By calculating the values of mean residual life function when x = 1, x = 4 and x = 9, determine whether the mean residual life of the $W\left(3, \frac{1}{2}\right)$ distribution is an increasing or decreasing function of x.

