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Introduction to Extreme
Events

‘H Extreme Events

0 Events that have a low probability of occurring and a high financial impact i.e. low frequency and
high severity.

Example -

> A loss due to natural calamity ; stock market crash.

> A large amount of claims come together

0 As we extrapolate extreme value probabilities from our median data we end up understating
them.



Introduction to Extreme
Events

‘H Extreme Events

0 Problems with modelling extreme events
1. No data/ very less data for extreme events.

2. Non normality of financial returns or losses as these event distributions have fatter tails and
sharper peaks

3. Probability of extreme events is underestimated as normal distribution has narrow tails.



Introduction to Extreme
Events

Extreme Events

[0 Kurtosis

K = 3 is mesokurtic distribution
[Normal Distribution]

K > 3 is leptokurtic distribution
[Sharper Peak]

K < 3 is platykurtic distribution
[Flatter Peak]



1.1 Heteroscedasticity

‘E Asset Return Volatility is not a constant (clustering volatility ) but it changes stochastically with time

- Heteroscedastic pdf has a fatter tail than pdf with constant volatility

The graph below compares two distributions for the price of a share in one year’s time:

o a N(5, o) distribution with constant volatility, o =1

° a N(5, 0-2) distribution where the volatility is heteroscedastic, ie 60=0.5 and o=1.5
with equal probability.



1.1 Heteroscedasticity
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1.1 Heteroscedasticity

‘H Extreme Values
0 Block Maxima

Divide the data into blocks and select the highest value from each block.

0 Peak Over Threshold Exceedances

Model the data above a threshold level



1.2 Block Maxima

The dataset below shows the claim amounts in £000s in respect of a commercial property

Q

portfolio over a period of a year.

Claim Claim Claim Claim Claim Claim Claim Claim
number | amount number | amount number | amount number | amount

1 9 17 12 33 19 49 118
2 28 18 35 34 17 50 55
3 20 19 12 35 66 51 14
4 8 20 75 36 55 52 94
5 102 21 80 37 81 53 54
6= 152 22 42 38 140 54 81
7 23 23 9 39 64 55 62
8 108 24 122 40 9 56 83
9 42 25 145 41 9 57 23

10 12 26 13 42 36 58 19

11 110 27 16 43 185 59 55

12 9 28 113 44 135 60 104

13 22 29 9 45 25

14 37 30 8 46 16

15 147 31 12 47 55

16 128 32 84 48 31




1.2 Block Maxima

Q

(i) Determine the values of X, where the block size is:
(a) n=>5
(b) n=10
(ii) Comment on the trade-off between the block size and the values of X,, that will be used

to fit the extreme value distribution.
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1.2 Block Maxima

Q X, = max value of X in a block
= m = no of blocks
n = no of values in a block
X, = max(Xy, X5, ... X,)
X, is the block maxima
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Block maxima model
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1.2 Block Maxima

‘H Generalized Extreme Value Distributions (GEV)

Whatever the underlying distribution of data the distribution of the standardized maximum values
will converge to a distribution called General Extreme Value Distribution.
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2. General Extreme Value Distribution

Q X’~N(y,%z)—>%~N(O,1)

X,, = max(X,, X, ...X,) = Block Maxima

Model

LEN(0,1) [standardised]
I

for extreme values

Xm—Qn

A Modelling Upper Tail



2. General Extreme Value Distribution

() CDFofXp,



2. General Extreme Value Distribution

O  X~Exp(d)

= _ 4l
an—;lnn
Bn =

lim,,_, o P (% < x)

lim P(X;y; < x * B, + i)

n— o

NP
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2. General Extreme Value Distribution

GEV distribution
O

GEV - a (location parameter ) - mean
B (scale parameter) — variance
Yy (shape parameter )  — skewness

CDF of GEV distribution :
(

exp _[1+y(x——a)J_7] y#0
\ B

SBECL) g

H(x) = <
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General Extreme Value Distribution

Gumbel Type GEV

Based on y, there are 3 types of GEV Distribution
1. y =0 - Gumbel Type Distribution

2. ¥y >0 - Fretchet GEV

3. vy <0 - Weibull GEV

17



2. General Extreme Value Distribution

() PDEF of GEV distribution:
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2. General Extreme Value Distribution

() PDEF of GEV distribution:
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Fréchet-type GEV distributions

Weibull-type GEV distribution
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General Extreme Value Distribution

y > 0 — Fretchet
» Highly +vely skewed
— heavy tailed

Used for modelling extreme financial event lower bound X>(a — g)

y <0
» Highly —vely skewed

> Finite upper limit = upper bound X < a —g

y=20
» mildly +ve skewed
» no bounds

21



Choosing form of GEV distribution:

2. General Extreme Value Distribution

GEV distributions (for the maximum value) corresponding to
common loss distributions

Type WEIBULL GUMBEL FRECHET
Shape parameter y <0 y=0 y >0
Underlying Beta Chi-square Burr
distribution Uniform Exponential F
Triangular Gamma Log-gamma*

Lognormal Pareto

Normal t

Weibull
Range of values B B
permitted x<a—7 0 sX 50 x>a—7
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2. General Extreme Value Distribution

O The claim amounts in a general insurance portfolio are independent and follow an exponential
= distribution with mean £2,500.

(i)
(ii)

(iii)

Calculate the probability that an individual claim will exceed £10,000. [1]

Calculate the probability that, in a sample of 100 claims, the largest claim will exceed
£10,000 using:

(a) an exact method

(b) an approximation based on a Gumbel-type GEV distribution. [5]

You are given that, for an exponential distribution with parameter A, the approximate
distribution of max{Xy,...,X,} for large nis a Gumbel-type GEV distribution with CDF:

X—a, _ & =1
H(x)—exp(—exp(—( 7 DJ where a, = llnn and B, P

State the two key assumptions made in (ii)(a). [1]
[Total 7]
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3 Peak Over Threshold Exceedances

‘H Generalized Pareto Distribution

0 Whatever the underlying distribution the distribution of the threshold exceedances will converge
on the distribution called Generalized Pareto Distribution.

Loss
amount .
) R X )
threshold O O
* | 0 500 O
O
| 00 S ° % .

Peak over threshold model
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Generalised Pareto Distribution

Threshold Exceedances
X—u/X>u u — threshold

The higher the value of the threshold, the more extreme values of X. However using a higher
threshold means that we have fewer values with which to fit the extreme value distribution.
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3. Generalised Pareto Distribution

() CDFofX—-u/X>u
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3. Generalised Pareto Distribution

() CDFofX—-u/X>u
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Generalised Pareto Distribution

The dataset below shows the claim amounts in £000s in respect of a commercial property
portfolio over a period of a year. (This is the dataset from the question in Section 2.1.)

Claim Claim Claim Claim Claim Claim Claim Claim
number amount number amount number amount number amount

1 9 17 12 33 19 49 118
2 28 18 35 34 17 50 55
3 20 19 12 35 66 51 14
4 8 20 75 36 55 52 94
5 102 21 80 37 81 53 54
6 152 22 42 38 140 54 81
7 23 23 9 39 64 55 62
8 108 24 122 40 9 56 83
9 42 25 145 41 9 57 23
10 12 26 13 42 36 58 19
11 110 27 16 43 185 59 55
12 9 28 113 a4 135 60 104
13 22 29 9 45 25

14 37 30 8 46 16

15 147 31 12 a7 55

16 128 32 84 48 31

(i) Calculate the values of X —u| X >u when:
(a) u=100

(b)

u=125
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3. Generalised Pareto Distribution

O With reference to the question above, use the method of maximum likelihood to fit a distribution
= tothe threshold exceedances when the underlying claims distribution is exponential and the
threshold is chosen to be 100.
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3. Generalised Pareto Distribution

o,

=  More generally,

The generalised Pareto distribution is a two-parameter distribution with CDF:

i ~y
1—(1+i) y#0
174

1—exp(—%) y=0

G(X)=<
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3. Generalised Pareto Distribution

PDF of the GPD distribution:
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3. Generalised Pareto Distribution
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3. Generalised Pareto Distribution

‘H Key Advantage of the GPD

0 The General Pareto Distribution has the advantage that is uses a larger part of the data
and models all the large claims above the threshold, not just single higher value.
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Measures of Tail Weights

» Existence of Moments (raw and central)

If more number of non central moments exist than that distribution has a lighter tail

Eg Pareto (a,1) - moment existif K< a
E(X*) = XX*P(x)

higher @ - more moments - lighter tail

lower a — less moments - fat tails

Eg Ga(a, B)
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4. Measures of Tail Weights

Q » Limiting Density Ratio

lim fx1 (X)

= o0 = numerator has heavier tail
X—00 fxz(x)

= 0 - denominator has a heavier tail

Compare it for a Pareto distribution with @ = 2 and a = 3 with the same A
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4. Measures of Tail Weights

Q Consider the Gamma(0.5, 0.005) and Pa(4,300) distributions, both of which have a mean of 100
"~ and a variance of 20,000.

Use the ‘limiting density ratio’ method to compare these two distributions.

36



Measures of Tail Weights

» Hazard Rate

» Example — for mortality-

f(t) = tPe * iyt o
t
F(t)= tqy Pxrt = Trn

1. Hazard is an increasing function of x

Tail will be lighter as less people reach higher ages
2. Hazard is a decreasing function of x

Heavier Tail as more people reach higher ages
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4. Measures of Tail Weights

Q (i) Determine the hazard rate for:
(a) the Exp(A) distribution
(b) the Pa(cx,A) distribution.

(ii) Comment on the differences between these hazard rates.
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4. Measures of Tail Weights

Q For a Gamma distribution with same A4

0.5

0.4

0.3

0.2

0.1

Hazard function for the gamma distribution

a=0.5

oa=1

o=2

10
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Measures of Tail Weights

» Mean Residual Time

[ (1=Fy(Y).dy
1-F(x)

e(x) =

If MRT is an increasing function of x ; fatter tail
If MRT is a decreasing function of x ; lighter tail
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4. Measures of Tail Weights

Q

(i)

(ii)

Determine the mean residual life for:

(a) the Exp(A) distribution

(b) the Pa(a,A) distribution where o >1.

Comment on the behaviour of these functions.

41



4. Measures of Tail Weights

Q

(i)

(ii)

Determine the mean residual life for:

(a) the Exp(A) distribution

(b) the Pa(a,A) distribution where o >1.

Comment on the behaviour of these functions.
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4. Measures of Tail Weights

Q

(i) Show that:

% a2 1
je‘3y dy=§P(;(§ >6x2) [5]

X

1
Hint: use the substitution u=3y? and transform the integrand into the PDF of the Gamma(2,1)
distribution.

(ii) Hence deduce an expression involving a chi-squared probability for the mean residual life
1
for the W(3,E) distribution. [2]
(iii) By calculating the values of mean residual life function when x=1, x=4 and x=9,

1
determine whether the mean residual life of the W(3, E) distribution is an increasing or

decreasing function of x. [2]
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4. Measures of Tail Weights

o,



