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Introduction

Time Series is a Stochastic Process indexed in
[0 Discrete Time Domain
0 Continuous State Space

Time series data is a collection of observations obtained through repeated measurements

over time

Example

0 Closing Price of a Share

0 Inflation Rate every quarter
0 Temperature on a given day



https://www.influxdata.com/blog/what-is-time-series-data-and-why-should-you-care/
https://www.influxdata.com/blog/what-is-time-series-data-and-why-should-you-care/

1 Motivation

0 Why do we need to model Time Series ?

0 To help understand the process better
0 To be able to forecast / predict future behaviour

0 To improve decision making
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1.1 Univariate Time Series Process

‘E 0 Observe a single process at a sequence of different times
Continuous State Space
0 Discrete Time Set

1

0 The term "univariate time series" refers to a time series that consists of single (scalar)
observations recorded sequentially over equal time increments. ... If the data are
equi-spaced, the time variable, or index, does not need to be explicitly given.



1.2 Stationarity

0 Stationarity means that statistical properties of the stochastic process remain
unchanged.

0 Stationarities can be of two types
e Strong / Strictly Stationary
« Weak Stationary

A process {Xt} is
Strict Stationarity :- If the joint Distribution of (X;1, Xt2, X¢3 - Xtn) & Xe1450 Xe24k - Xenak)
is same i. e. all statistical properties remain the same.

Weak Stationarity if,
» Meanie. E(X,) is constant
» Covariance depends only on the time lag

» As covariance depends only on the time lag it implies that the variance of the process V(X;)
(Covariance with lag 0) is constant




1.3 Purely Indeterministic Process

‘H The process {Xt}is a purely indeterministic process if knowledge of X; ,X,, X3 is
progressively less useful at predicting the value of Xy as N - o

» When we talk of a ‘stationary time series process’ we shall mean a weakly stationary
purely indeterministic process.

» Example
X; =Y;_4 + Y, is aStationary time series process



1.4 White Noise Process

‘H White Noise Process e; is a series of uncorrelated random variables.

For time series we assume the mean of White Noise Process to be zero, E(e;) = 0

Yi =cov(eseryr) =0;K>0

Sequence of normal random variable are an important representative of WNP.

A white noise process with mean zero is used to model error in Time Series.



Question

Let Y; be a sequence of independent standard normal random variables. Determine if the
following process is stationary time series (given the definition above).

Xt = Xt—l + Yt
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Solution

Here we have:
E(X;)=E(X;_q +Y;)=E(Xp_1)+E(Y;) = E(X;_4)
So the process has a constant mean. However:
var(X;) =var(X;_q +VY;) =var(X_q)+var(¥;) = var(X;_1)+1

Here we are using the fact that Y; is a sequence of independent standard normal random

variables. Since the variance is not constant, the process is not stationary.
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1.5 Auto Covariance and Auto Correlation

Auto Covariance

If Time Series is stationary, covariance depends only on the lag k that is

Vi = cov(Xe, Xeix)

Depends only on time difference & not specific points in time
Auto Correlation Function

__ covXe, Xevk) Yk
\/(V(Xt) *V(Xeyn) Yo

For Purely Indeterministic Process as k — oo; p;, = 0

Pk
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Auto Covariance and Auto Correlation

Correlograms - Autocorrelation functions are the most commonly used statistic in time series analysis. A lot of
information about a time series can be deduced from a plot of the sample autocorrelation function (as a function of the
lag). Such a plot is called a correlogram.

Stationary series Alternating series Series with trend
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1.6 Partial Auto Correlation Function (PACF)

Conditional auto correlation of X, with X, given X;11,Xr42 , X413 1S ¢p

Corr(Xe, Xeyre | Xew1, Xewos e e Kewi—1)
$1 = p1

P2~ pt

C1-pf

P

These formulae can be found on page 40 of the Tables.
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2 Linear Models of Time Series

The main linear models used for modelling stationary time series are:
* Autoregressive process (AR)
e Moving average process (MA)

* Autoregressive moving average process (ARMA).

The definitions of each of these processes, presented below, involve the standard zero mean white

noise process

15



2.1 Auto Regressive process - AR(p)

A Time Series process X is an AR(p) process if it depends on past p terms of series

‘H Xe=p+a X — ) +ay(Xep —p) + oy (Xe—y — ) + €
This is an AR(p) process with mean u

Thus, the autoregressive model attempts to explain the current value of X as a linear combination
of past values with some additional externally generated random variation.

The similarity to the procedure of linear regression is clear and explains the origin of the name
‘autoregression’.
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2.1 AR(1) Process

AR(1) process

Xe=p+a(Xe 1 —p) +e;
where e; ~ WNP

Mean of AR(1) process.
E(Xe) =p+at(u, —w

Variance of AR(1) process

V(X,) = a? (

2t

1—a?

) + a?Var(X,)

where, as before, 0 denotes the common variance of the white noise terms {e,}.

Auto Covariance Function
Yk = akl’o
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2 1 The backwards shift operator, B, and the difference
operator, Vv

The backwards shift operator, B, acts on the process X to give a process BX such that:
BX: = X¢—1
Operators can be applied repeatedly

BZXt - Xt_z and BrXt - Xt—T‘

The difference operator, V, is defined asV=1—-B
VXt - Xt - Xt—l
Operators can be applied repeatedly

VX, = V(VX, — VX,_1)
=Xt = Xe—1 — X1 + X2
= Xe — 2Kt 1 + X

The usefulness of both operators will become apparent in later sections.
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2.1 AR(p) Process

The equation of the more general AR(p) process is:

Xe=puta (Xeg—p)+ayXep—p) + -+ “p(Xt—p —u)+e
or, in terms of the backwards shift operator:

(1-ayB—ayB*— - —a,BP)(X,— 1) = e,
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2.1 AR(p) Process

Condition for stationarity of an AR(p) process

If the time series process X given by AR(p) is stationary, then the roots of the equation:

1—az—ayz*— - —a,zP =0
are all greater than 1 in absolute value.

(The polynomial 1 — ayz — ayz* — - — «
autoregression.)

»ZP is called the characteristic polynomial of the
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2.1 Yule Walker Equations

Often exact values for the y;, are required, entailing finding the values of the constants Ay,.
we have:

cov(Xe, Xi—p) = agcov(Xe—q, Xp—p) + -+ apcov(Xt_p,Xt_k) + cov(es, Xi—k)

which can be re-expressed as:

Yk = Q1Vk-1+ Q2¥Vk—2 + -+ Qp¥Vg—p + 07 k=0
for0 <k <p.

These are known as the Yule-Walker equations. Here the notation 1, denotes an
indicator function, taking the value 1 if k = 0, the value 0 otherwise.

We can make equations for yo y1,72, ¥3 so on, and solve them simultaneously to find their
values.
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2.1 Behavior of the PACF for an AR(p) process

For an AR(p) process:

¢, =0fork>p

This property of the PACF is characteristic of autoregressive processes and forms the basis of
the most frequently used test for determining whether an AR(p) model fits the data.

It would be difficult to base a test on the ACF as the ACF of an autoregressive process is a
sum of geometrically decreasing components.
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The first-order moving average model,
MA(1)
A first-order moving average process, denoted MA(1), is a process given by:

‘H Xi=u+e;+ fes_q

2.2

The mean of this process is u; = u.

The variance and autocovariance are;

Yo = var(e; + fe,_1) = (1+ p?)o?
V1 = cov(e, + fec_q,ec—1 + fer_y) = fo?
Yk = 0fork >1
Hence the ACF of the MA(1) process is:

po =1

__ b
L= T3 pe
pk=0f0rk>1
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2.2 Stationarity & Invertibility

An MA(1) process is stationary regardless of the values of its parameters.

The parameters are nevertheless usually constrained by imposing the condition of invertibility.

The defining equation of the MA(1) may be written in terms of the backwards shift operator:
X—u=(1+pBB)e

In many circumstances an autoregressive model is more convenient than a moving average
model.

We may rewrite MA(1) as:
A+pB) "X —p)=e
and use the standard expansion of (1+ BB)™' =1 — 8B + f?B? — B3B3 + --- to give:

Xe—pnu—BXeo1— W +B*Xea—p) — PP Xz —p) +-=¢

MA(1) -> AR()

The expansion referred to here is given on page 2 of the Tables.
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2.2 Condition for Invertibility

The original moving average model has therefore been transformed into an autoregression of
infinite order. But this procedure is only valid if the sum on the left-hand side is convergent, in

other words if |B] < 1.
When this condition is satisfied the MA(1) is called invertible.
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2.2 MA(q) Process

‘E The defining equation of the general g th order moving average is, in backwards shift
notation:

X—pu=(14pBB+pB*+ -+ p,B%)e
In other words, it is:

Xe—u=e+ i1+ Brei 2+ -+ Bge 4

Moving average processes are always stationary, as they are a linear combination of white
noise, which is itself stationary.
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2.2 Condition for Invertibility

The process X defined by the equation:
Xe —H =e+ freg g+ fre+ -+ frerg
is invertible if and only if the roots of the equation:
1+ Bz + Poz? + -+ ez =0

are all strictly greater than 1 in magnitude.

This is equivalent to saying that the value e, can be written explicitly as a (convergent)
sum of X values.
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Question

CS2A September 2022 Q2
Consider the time series process, Xt, given by:

L 1
X,=aX,_+3X, o+ e +be,

where ¢, is a sequence of independent and identically distributed N(0, %) random
variables.

Determine the values of the parameters a and b such that Xt is:
(i) stationary. [5]
(i) invertible. [2]
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Solution

(1)
X t1s stationary if and only if the roots of the characteristic polynomial
1 -a* lambda - > * lambda™?2
are both greater than 1 in magnitude
For lambda = 1 to be a root, a =
For lambda = -1 to be a root, a = -%
If a = 0, then the characteristic polynomial reduces to 1 - %2 * lambda”2
This has roots lambda = sqrt(2) and -sqrt(2), which are greater than 1 in magnitude

Stationarity therefore holds for a = 0
Overall, stationarity holds if and only if abs(a) < '2

29



Solution

(i1)

X t1s invertible if and only if the value of /lambda satisfying
1 + b * lambda = 0

is greater than 1 in magnitude,

i.e. if and only if -1 / b 1s greater than 1 in magnitude

Hence invertibility holds if and only if abs(b) < 1
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Question

CT6 September 2017 Q10

Let X, =a+bt+Y,, where Y, is a stationary time series, and @ and b are fixed non-
zero constants.

(1) Show that X, is not stationary. [2]
Let AX, =X, - X,,.

(i)  Show that AX is stationary. [1]
(i)  Determine the autocovariance values of AX; in terms of those of V.. (4]

Now assume that Y, is an MA(1) process, i.e. Y,=¢,+ Bg, ;
(iv)  Set out an equation for AX; in terms of b, B , € and L, the lag operator. [1]

(v)  Show that AX, has a variance larger than that of Y. (4]
[Total 12]
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Solution

1) Since E(Y;) = pny s constant for each ¢, E(X;) = a + bt + py.
Since this mean depends on t then the time series X; is not stationary.

(1) AX; = b+ AY; (and since Y} 1s stationary AX; 1s)
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Solution

(1) And the covariance function s

Cov(AXy, AXy ) = Cov(Yy =Y. Yy 5= Yy g )

= Cov( ¥, Yy ) + Cov( Y1, Y—1—5) — Cov(¥p, Yy 5 1) — Cov(¥p—1, Y )
=y¥(s) +v¥s) -y Y+ 1) -y ¥(s-1)

=2y M) -y Ys + 1) —v¥(s- 1)

Where yY (s) represents the autocovariance of Y ats.
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Solution
(v)  Yy=g;+ Pe;s_j, where g;1s white nosse with variance o2 then
AXp=b+e +Pep - & -1- P2 [1]
or
AX;=b+(1-L)1+BL) e, [1]
[Max 1]

(V) In particular Y, = ¢, + f¢, ,the corresponding auto-covariance function is
Y (0)=(1+p")0" and y' ()= fo” . [2]

So from (ii)) var(4(X)) = 2y¥(0) —2y¥(1) = 2(1 4+ f2o? — 2B0? =
1+ 892+ (A —-P)2%%2> 1+ pHa? =yY(0) [2]
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2.3

The autoregressive moving average
process

A combination of the moving average and autoregressive models,an ARMA model
includes direct dependence of X; on both past values of X and present and past values of e.

The defining equation is:
Xe=pu+ay(Xeq —p) +-+ “p(Xt—p —u)+e +preg g+ -+ Bqei—q
or, in backwards shift operator notation:
(1 —aB— - — apo)(X — W = (1 + (1B + -+ ,Bqu)e

Autoregressive and moving average processes are special cases of ARMA processes. AR(p) is
the same as ARMA (p, 0). MA(q) is the same as ARMA (0, g).
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2.3 Stationarity & Invertibility for ARMA(p, q)

 To check the stationarity of an ARMA process, we just need to examine the autoregressive
part.

« The moving average part (which involves the white noise terms) is always stationary. The
test is the same as for an autoregressive process - we need to determine the roots of the
characteristic equation formed by the X terms.

The process is stationary if and only if all the roots are strictly greater than 1in magnitude.

* Similarly, we can check for invertibility by examining the roots of the characteristic equation
that is obtained from the white noise terms.
The process is invertible if and only if all the roots are strictly greater than 1in magnitude.
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2.4 ARIMA(p, d, q)

Definition of an ARIMA process
If X needs to be differenced at least d times in order to reduce it to stationarity and if the dth
difference Y = V4X is an ARMA(p, q) process, then X is termed an ARIMA(p, d, q) process.

Equation:
In terms of the backwards shift operator, the equation of the ARIMA(p, d, q) process is:
(1-ayB—-—a,BP)1-B)*X-p)=(1+pB++p,B%)e
An ARIMA(p,d, q) process is I(d).
We can think of the classification ARIMA(p, d, q) as:
AR(p)I(d)MA(q)
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3 Markov Process

‘H » |If future development is determined based on present value inly then
process is said to have Markov property and hence the process could be
called a Markov process
» Thus, Markov processes are the natural stochastic analogs of the
deterministic processes described by differential and difference equations.

AR(1) is a Markov process
AR(p) is a not a Markov Process
MA(1) is not a Markov process [ since MA(1) - AR(c0) ]

VVV
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Question

CS2A September 2022 Q3

Consider the following stochastic process:

o0
X, = E 0.5'e,_;
i=0

where ¢; is a sequence of independent and identically distributed random variables
with a mean of zero and variance o2, for F=0xL.x2,...

(1) Determine whether X; is stationary and satisfies the Markov property. (4]

(1)  Determine whether your conclusions from part (1) also apply to the process
Y, =X,-03X_,. [6]
[Total 10]
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Solution

(i)
X tis stationary since it is an AR(1) process. In particular
E(X t)=E\sum 0"infinity 0.5%1 E(e {t-1})=0 [Y2]

Cov(X t,X {t-s})= E(\sum_ O0”infinity 0.5*1 E(e {t-1}),
\sum O0”infinity 0.5% E(e {t-s-1})=0+ 0.5"s E(\sum_ 0"infinity 0.5"1 0.5"1 e"2 {t-s-1})

=(0.5"s \sigma”2 /(1-0.5"2) [1'%]
As Xt=0.5 X {t-1}+e t, the distribution of Xt depends on X {t-1} and only the
information at time t-1 and not any other r.v. before that point [1]

Hence we have the Markov property [1]
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Solution

S11;1)6 stationarity of Yt is implied from that of Xt as

E(Y _t)=E(X 1t)-0.3 E(X {t-1})=0

and

Cov(Y t,Y {t-s})=Cov(X t-0.3 X {t-1},X_{t-s} -0.3 X_{t-s-1} )=
Cov(Xt,X_{t-s})-0.3 Cov(Xt,X_{t-s-1})-0.3 Cov(X{t-1},X_{t-s})+0.09
Cov(X{t-1},X {t-s-1})

All these four components do not depend on t due to the stationarity of Xt

For the Markov property Yt however this is not the case:
As Xt=0.5 X {t-1}+e t,
Y t=0.5 X t-1+et-0.3 X {t-1}=et+0.2 X {t-1}=et+0.2 ¥0.5 X {t-2}+0.2 e {t-1}

Substituting X_{t-21=1/0.2*(Y_{t-1}-¢_{t-1})
Y t=0.5Y {t-1}+e t-0.3 e {t-1}

In this form one can see that the prediction for Y t depends notonlyonY {t-1} but
also on the information contained ine {t-1}
Hence the Markov property is NOT satisfied
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